Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

Тут можно читать онлайн Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Прима, год 1998. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Жизнеописание Л. С. Понтрягина, математика, составленное им самим
  • Автор:
  • Жанр:
  • Издательство:
    Прима
  • Год:
    1998
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.25/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим краткое содержание

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - описание и краткое содержание, автор Лев Понтрягин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

С именем Понтрягина связана целая эпоха в развитии математики. Труды Л. С. Понтрягина оказали определяющее влияние на развитие топологии и топологической алгебры. Он заложил основы и доказал основные теоремы в оптимальном управлении и теории дифференциальных игр. Его идеи во многом предопределили развитие математики в XX веке.

Текст публикуемого ниже «Жизнеописания...» был написан, по воспоминанию вдовы Льва Семёновича — Александры Игнатьевны Понтрягиной, после тяжёлой болезни, зимой 1982–83 года, и подготовлен к изданию по рукописи, предоставленной вдовой.

Книга насквозь лична и субъективна, но в ней хорошо отражена эпоха развития науки в Советском Союзе, в частности — развитие математики. Она поражает своей правдивостью и открытостью. В этом, может быть, и есть её историческая и воспитательная ценность.

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать книгу онлайн бесплатно, автор Лев Понтрягин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 30-х годах этого столетия предельные циклы Пуанкаре нашли применение в радиотехнике. А именно, А. А. Андронов показал, что ламповый генератор работает на предельном цикле. До этого работу ламповых генераторов пытались объяснить при помощи линейных дифференциальных уравнений, что было, конечно, невозможно. Качественная теория дифференциальных уравнений, основанная Пуанкаре, получила значительное развитие в работах многих математиков. В частности, Андронов ввёл в связи с фазовой картиной на плоскости понятие грубой системы, важной с физической точки зрения. Я помог ему немного в решении некоторых связанных с этим задач и стал соавтором этого понятия.

Нет сомнений, что при решении ослабленной проблемы Гольдбаха Виноградов преодолел гораздо большие трудности, чем Пуанкаре при геометрическом изучении системы дифференциальных уравнений (1). Несмотря на это, описанный результат Пуанкаре кажется мне гораздо более интересным и важным для математики, чем результат Виноградова. Конечно, это, может быть, объясняется тем, что в достижении Виноградова я не знаю того, что только и может быть в нём интересно, именно самого доказательства. А результат Пуанкаре мне ясен, я умею применять его и знаю применения.

Здесь всплывает на поверхность важнейший для занятия математикой вопрос. Именно, вопрос о выборе тематики. Вопрос о том, чем следует заниматься. Вопрос этот для математиков, быть может, более труден, чем для специалистов других областей знаний. Математика возникла как наука чисто прикладная, и в настоящее время её основной целью является изучение окружающей нас материальной действительности на пользу человечества. С другой стороны, в развитии математики есть своя логика, которая часто уводит в сторону от прикладного пути. Создаются целые теории, не имеющие отношения к приложениям, но чрезвычайно красивые в своём роде. Эти математические красоты доступны только математикам и поэтому не могут быть оправданием для создания таких теорий.

Но всё же теории, не имеющие приложения, а имеющие большую внутреннюю стройность, нельзя считать незаконнорождёнными и отвергать. Они составляют внутреннюю ткань всей математики, и их иссечение могло бы нарушить её целостность. Кроме того, известны случаи, когда первоначально лишённые всяких приложений понятия находят в дальнейшем свои приложения. Примером могут служить конические сечения. Я лично считаю, что при занятиях математикой часто следует обращаться к первоисточникам, т.е. к её приложениям. Это вносит свежую струю в развитие математики, так как из глубины разума невозможно извлечь ничего столь значительного и интересного, что можно извлечь из прикладных задач. Но всё же, руководствуясь соображениями приложений, хочется выбирать такие математические проблемы, которые сами по себе, как математические, интересны. Такое сделать нелегко, но всё же иногда удаётся.

Существует, однако, совершенно другой подход к математической проблематике. Это стремление решить знаменитые проблемы, т.е. такие, которые давно поставлены, но не поддаются решению. Прекрасными примерами таких проблем являются проблема Гольдбаха и великая теорема Ферма. Но такой подход кажется мне уж очень спортивным, а ведь наука не спорт. Её главной целью является подчинение людям окружающей материальной действительности с тем, чтобы использовать её для жизни людей. Некоторые считают, что, решая трудные проблемы, математики совершенствуют свой аппарат для того, чтобы в дальнейшем его можно было использовать по прямому назначению. Но я полагаю, что лучше уж совершенствовать свой аппарат, употребляя его сразу по прямому назначению для решения сколько-нибудь прилагаемых к жизни задач. Столь же безосновательным мне кажется утверждение, что, играя в шахматы, люди совершенствуют свои умственные способности. Я считаю, что игра в шахматы скорее изнуряет умственные способности. Лучше уж совершенствовать их на чём-то нужном.

При попытке объяснить процесс математического творчества я буду исходить из одного высказывания Пуанкаре, смысл которого состоит в следующем. Всякое, даже очень сложное математическое построение состоит из очень простых логических переходов, каждый из которых не представляет никакой трудности при понимании. Сложное переплетение всех этих простых переходов представляет собой трудную для понимания конструкцию, ведущую к результату.

Таким образом, сложное математическое построение представляет собой как бы логическое кружево из мелких стежков очень простой структуры. На одном конце этого сложного куска кружев находится предпосылка, а на другом — результат. Каждый стежок, составляющий кусок кружев, очень прост. Всё в целом сплетение представляется очень сложным. Для понимания его требуется большой опыт и одарённость математика. Процесс математического творчества заключается в сплетении этого сложного логического куска, на одном конце которого находится предпосылка, а на другом — научный результат.

Как же математик выплетает то сложное кружево, которое ведёт к желанной цели? Для этого он, по моему представлению, намечает сперва узловые точки будущего куска. Для будущего сложного сплетения следует удачно наметить его узловые точки. После того, как эти узловые точки будут намечены, заполнить оставшиеся пустоты будет легче, чем построить кружево в целом. Для простоты будем считать, что всё сложное сплетение, ведущее от предпосылки к результату, представляет собой последовательность логических шагов, которую нужно пройти.

Таким образом, узловые моменты построения состоят из промежуточных утверждений, причём каждое следующее отстоит от предыдущего на некоторое число мелких логических переходов. Если такая последовательность этапов уже намечена, то переход от каждого к следующему становится делом более простым и более видимым. Математик намечает эти промежуточные результаты, пользуясь своим опытом и ассоциативной памятью, позволяющей ему по аналогии улавливать сходство между различными математическими утверждениями и обретать веру без всякой уверенности в том, что переход от каждого этапа к следующему возможен. Если намеченные этапы выбраны удачно и ведут действительно к цели, то потом удаётся восстановить постепенно отрезки всего пути.

Такова, по моему мнению, грубая схема математического творческого мышления. Для проведения описанного построения цепочки производится огромное число неудачных проб. Талант заключается в том, чтобы быстро оценить ситуацию, т.е. усмотреть, где находится правильный, а где ложный путь. Среди множества неудачных попыток вдруг обнаруживается и удачная. Это называют иногда озарением. В действительности же это плод огромного труда и отбора из множества негодных путей правильного пути.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Понтрягин читать все книги автора по порядку

Лев Понтрягин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнеописание Л. С. Понтрягина, математика, составленное им самим отзывы


Отзывы читателей о книге Жизнеописание Л. С. Понтрягина, математика, составленное им самим, автор: Лев Понтрягин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x