Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим

Тут можно читать онлайн Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары, издательство Прима, год 1998. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Жизнеописание Л. С. Понтрягина, математика, составленное им самим
  • Автор:
  • Жанр:
  • Издательство:
    Прима
  • Год:
    1998
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    4.25/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Лев Понтрягин - Жизнеописание Л. С. Понтрягина, математика, составленное им самим краткое содержание

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - описание и краткое содержание, автор Лев Понтрягин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

С именем Понтрягина связана целая эпоха в развитии математики. Труды Л. С. Понтрягина оказали определяющее влияние на развитие топологии и топологической алгебры. Он заложил основы и доказал основные теоремы в оптимальном управлении и теории дифференциальных игр. Его идеи во многом предопределили развитие математики в XX веке.

Текст публикуемого ниже «Жизнеописания...» был написан, по воспоминанию вдовы Льва Семёновича — Александры Игнатьевны Понтрягиной, после тяжёлой болезни, зимой 1982–83 года, и подготовлен к изданию по рукописи, предоставленной вдовой.

Книга насквозь лична и субъективна, но в ней хорошо отражена эпоха развития науки в Советском Союзе, в частности — развитие математики. Она поражает своей правдивостью и открытостью. В этом, может быть, и есть её историческая и воспитательная ценность.

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать онлайн бесплатно полную версию (весь текст целиком)

Жизнеописание Л. С. Понтрягина, математика, составленное им самим - читать книгу онлайн бесплатно, автор Лев Понтрягин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Стараясь объяснить процесс научного творчества, Пуанкаре относил значительную часть его на подсознательную деятельность мозга. Делая это, он тем самым отказывался от ответа на вопрос, так как подсознательная деятельность мозга не наблюдаема. Всё же я думаю, что кое-что о процессе математических занятий сказать можно, и постараюсь это сделать.

Главная часть математических занятий заключается в получении новых математических результатов. Математические результаты я делю на два различных типа:

*1*. Математический результат предвидится и формулируется заранее, почти без всяких занятий, а занятия должны дать ответ на вопрос: верен ли формулируемый результат или не верен. То есть здесь имеется лишь два возможных ответа: да или нет.

*2*. Математический результат нельзя предвидеть заранее без всякого научного исследования. Математик имеет дело с какой-то задачей или явлением и ответа заранее предвидеть не может. Его нужно найти. Это и будет результат. В этом случае результат представляет собой совершенно новое математическое явление, или, иначе говоря, новую картину, которую нужно найти, одновременно убеждаясь в том, что она правильна и даёт решение поставленной задачи.

Для результата 1-го типа главный интерес, как правило, заключается в его доказательстве, а не в формулировке. Для результата 2-го типа интересна формулировка, а не только доказательство. Мне лично гораздо больше нравятся результаты 2-го типа. Приведу классические образцы результатов 1-го и 2-го типов.

Результат 1-го типа: проблема Гольдбаха. Ещё в XVIII столетии петербургский академик Гольдбах сформулировал следующую теорему: каждое чётное число может быть представлено как сумма двух простых чисел. Проблема Гольдбаха заключается в том, чтобы дать ответ на вопрос, правильна ли эта теорема или неправильна.

Проблема Гольдбаха до сих пор не решена. Ослабленная проблема Гольдбаха была решена И. М. Виноградовым в 1937 году. Она заключается в следующем. Легко видеть, что если теорема Гольдбаха верна, то каждое нечётное число можно представить в виде суммы трёх простых чисел. Однако из этой теоремы не следует теорема Гольдбаха. Когда говорят, что Виноградов решил проблему Гольдбаха, то имеют в виду данное им доказательство теоремы о том, что всякое нечётное число можно представить в виде суммы трёх простых чисел. Доказать теорему Гольдбаха очень трудно, так как в ней увязываются аддитивные и мультипликативные свойства целых чисел, кроме того, трудность видна также из того, что она до сих пор не поддаётся решению, а решена только частично и то с огромным трудом. Заслуга Виноградова заключается не столько в том, что он решил ослабленную проблему Гольдбаха, а в том, что он создал новый метод — метод тригонометрических сумм, позволивший ему решить ряд теоретико-числовых проблем. В частности, ослабленную проблему Гольдбаха.

Результат 2-го типа. Предельные циклы Пуанкаре. Если состояние технического или физического объекта определяется двумя величинами x, y, то процесс изменения этих величин во времени обычно описывается системой двух обыкновенных дифференциальных уравнений dx

Здесь правые части уравнений не зависят от времени t , т.е. система (1) автономна. Систему дифференциальных уравнений (1) можно интерпретировать на плоскости в виде векторного поля, ставя в соответствие каждой точке ( x , y ) плоскости фазовый вектор ( f ( x , y ), g ( x , y )). Решение системы (1) можно также интерпретировать в виде линии на той же фазовой плоскости. Для этого проводят линию, описываемую решением ( x ( t ), y ( t )) на фазовой плоскости, считая t параметром. Эти линии называются фазовыми траекториями системы (1). Они не пересекаются между собой, покрывают всю плоскость и дают так называемую фазовую картину решений системы дифференциальных уравнений (1). Две эти интерпретации связаны между собой. Фазовой вектор, отнесённый к точке ( x , y ), касается фазовой траектории, проходящей через эту точку.

Если задано начальное значение ( x 0, y 0) при заданном значении времени t 0, то, конечно, можно вычислить решение системы уравнений (1) при этом начальном значении на любом конечном отрезке времени t 0≤ tt 1. Возможность нахождения численного решения дают современные вычислительные машины. Но нахождение таких решений на конечном отрезке времени не решает всех проблем, которые возникают относительно системы дифференциальных уравнений (1). Так, вопрос о том, имеет ли система уравнений (1) периодические решения, т.е. замкнутые фазовые траектории, решить, вычисляя решения на конечных отрезках времени, невозможно. Точно так же невозможно решить вопрос о том, как ведут себя траектории, когда время неограниченно возрастает, а это очень важно для разных технических вопросов. На всё это обратил внимание Пуанкаре, введя в рассмотрение фазовую картину системы дифференциальных уравнений (1), положив этим начало качественной теории дифференциальных уравнений.

Пуанкаре принадлежит основное понятие, возникшее в качественной теории, — понятие предельного цикла. Периодическое решение системы (1) изображается на плоскости в виде замкнутой фазовой траектории. Если вблизи неё нет других замкнутых траекторий, то эта замкнутая фазовая траектория называется предельным циклом. Оказывается, что фазовые траектории, проходящие вблизи предельного цикла, наматываются на него как спирали и изнутри, и снаружи, при неограниченном возрастании или убывании времени t . В предположении некоторой общности положения оказывается, что траектории на предельный цикл снаружи и изнутри наматываются в обоих случаях либо при возрастании t , либо при убывании времени t . Если они наматываются при возрастании времени t , то предельный цикл является устойчивым решением. Физический прибор, описанный системой (1), может работать на этом предельном цикле, т.е. выдавать устойчивые периодические колебания. Пуанкаре обратил внимание также на значение положения равновесия системы (1), т.е. таких точек фазовой плоскости, которые обращают в нуль правые части дифференциальных уравнений (1). Эти точки являются постоянными решениями системы (1). Поведение траекторий вблизи них играет важную роль. Оно было изучено Пуанкаре, и он дал классификацию положений равновесия на основании этого поведения.

Качественная теория системы уравнений (1), построенная Пуанкаре, является характерным результатом 2-го типа. Ясно, что очень важно было решить систему уравнений (1), но получить её решение в виде формул удаётся лишь для очень немногих систем уравнений. Поэтому возникла задача найти какой-то новый подход к рассмотрению этих уравнений. Это сделал Пуанкаре, сосредоточив своё внимание на фазовой картине траекторий. Он извлёк из этой фазовой картины то важнейшее, что она даёт. Это предельные циклы, положения равновесия и общий характер поведения траекторий при неограниченно возрастающем t . Таким образом, было обнаружено новое математическое явление, предвидеть которое исходя из системы (1) невозможно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Лев Понтрягин читать все книги автора по порядку

Лев Понтрягин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнеописание Л. С. Понтрягина, математика, составленное им самим отзывы


Отзывы читателей о книге Жизнеописание Л. С. Понтрягина, математика, составленное им самим, автор: Лев Понтрягин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x