Александр Прищепенко - Огонь! Об оружии и боеприпасах
- Название:Огонь! Об оружии и боеприпасах
- Автор:
- Жанр:
- Издательство:Моркнига
- Год:2009
- Город:Москва
- ISBN:978-5-903080-62-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Прищепенко - Огонь! Об оружии и боеприпасах краткое содержание
В книге, написанной специалистом в области боеприпасов читатель найдет экскурсы в газовую динамику, физику деления ядер и разделения изотопов, электронику больших токов и напряжений, магнитную кумуляцию, электродинамику, и даже — и историю боевого применения различного оружия.
Издание обильно иллюстрировано: чтобы убедиться в этом, достаточно раскрыть его на любой странице и полистать. Среди иллюстраций много оригинальных, которые были получены автором при проведении опытов (некоторые, наиболее безопасные из них, он рекомендует провести и читателю). Если дать себе труд прочитать несколько абзацев, то можно убедиться и в том, что книга написана живым языком. Она рассчитана на тех, кто интересуется физикой — как получивших высшее образование в этой области, так и тех, кто знает предмет в пределах школьного курса.
Огонь! Об оружии и боеприпасах - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
…Читателю до сих пор не разъяснено, почему в опытах с ЦУВИ и с ВМГЧ «мишени размещались по всем азимутам…» или «мишени вышли из строя в пределах радиуса…». Теперь, когда он знает о «быстрых» гармониках тока — и в обмотке ВМГЧ и в проводящей цилиндрической или сферической ударной волне — настало время объяснить и это. Дело в том, что для волн различных частот имеются благоприятные и неблагоприятные направления излучения. Если «завить» проводник в петлю (изготовить магнитный диполь), то, в зависимости от расположения на нем минимаксов токовой волны, вблизи будут наблюдаться и минимаксы магнитного поля. Переменное магнитное поле на некотором расстоянии индуцирует и электрическое — сформируется электромагнитное излучение, тоже характеризующееся ми- нимаксами. Число таких минимаксов будет зависеть от соотношения длин: проводника, из которого изготовлен диполь и токовой волны, причем, чем большее число минимаксов тока укладывается на длине диполя, тем больше число «лепестков» излучения.

Проиллюстрируем это простейшее качественное описание (рис. 4.40). Цифры под диаграммами — отношения размера петли-антенны к длине волны, а длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения. Но каждая из этих диаграммы приведена для случая одной токовой волны, а если этих волн несколько? Наложите друг на друга хотя бы четыре диаграммы рис. 4.40, длины волн для которых различаются в пределах всего-то одного порядка! А ведь излучение УВИС и ВМГЧ состоит из мириадов гармоник, с частотами, отличающимися друг от друга в пределах трех порядков, а не в 10 раз. Отражение от земли еще более усложняет распределение, но в целом можно считать, что интегральная (проинтегрированная по всему диапазону частот) энергия рассеивается в пространстве по всем направлениям.
Насколько мучителен процесс спектральных измерений — передать сложно. Без особой надежды на создание у читателя соответствующей эмоциональной реакции, постараюсь его описать. То, что для измерений спектра необходимы специально разработанные приборы, понятно. Измерения производятся только в узких «полосах» (пропускание было существенно лишь для РЧЭМИ с частотами, отличавшимися примерно на 5 % от «центральной»), а в остальных диапазонах, которые, по оценкам, охватывали минимум четыре частотные декады (от десятков мегагерц до десятков гигагерц) эффективные фильтры препятствуют приему. Спектрометр (рис. 4.41) регистрирует и огибающую нескольких импульсов (рис. 4.42), давая информацию о мощности каждого из них в данном частотном диапазоне. Вся полученная информация хранится в памяти спектрометра и выводится на компьютер после опыта и вскрытия тщательно экранированного корпуса прибора (иногда — после перевозки его с полигона в гостиницу). Спектрометр полностью автономен (питание — от аккумуляторов). Отсутствие каких-либо гальванических связей является дополнительной гарантией от наводок, вызванных внеполосным РЧЭМИ. Зарегистрировав значение мощности РЧЭМИ в пределах «полосы» и поделив его на протяженность частотного интервала, получают значение спектральной плотности мощности или энергии — одну точку, каплю в огромном, более чем трехдекадном частотном море. Нечего и думать, чтобы получить таким методом весь спектр, а также пространственное распределение излучения, потому что для этого потребовались бы тучи спектрометров, для закупки которых не хватило бы доли бюджета, выделяемой Министерством обороны на исследовательскую деятельность во всех областях. Но вполне реальна другая возможность: получив несколько точек, восстановить по ним спектр, используя теоретическую модель явления. Если очень уж довериться этому способу, достаточно и одной точки, но такая самонадеянность вряд ли оправданна.


Дело здесь не в точности спектрометра (инструментальная ошибка невелика и составляет проценты) а в самой природе процесса.
Для излучения простейшего диполя (проволочная петли), число максимумов (рис. 4.40) возрастает с ростом различий размера петли и длин волн.
Сверхширокополосный источник излучает во всех направлениях. Но это не значит, что в пространственном распределении его излучения не существует минимаксов для отдельных, очень узких частотных диапазонов, и, даже если нет никаких признаков изменений режима работы излучателя, едва заметный его поворот приводит к тому, что мощность, регистрируемая спектрометром, изменяется весьма существенно. Каждый опыт стоит дорого и набирать статистику весьма накладно, поэтому из соответствующего вероятностного распределения и следуют огромные величины ошибок. Только когда экспериментальных точек, пусть и в разных частях спектра, достаточно много, восстановить спектр РЧЭМИ можно более-менее достоверно.
…При испытаниях лабораторных макетов ВМГЧ не было смысла возиться с автономной системой их энергообеспечения, но. когда была продемонстрирована эффективность возможного боевого применения излучателей этого класса, такая задача стала актуальной.

Как нетрудно видеть из осциллограммы 4.38а, ВМГЧ и сам мог «раскачивать» электрические колебания, поэтому напрашивалось решение: применить для создания, пусть и очень небольшого, начального поля в обмотке излюбленные постоянные магниты (рис. 4.43)! Их расположили так, что внутри обмотки ВМГЧ поля суммировались, а вне обмотки — вычитались. Но и такие ухищрения не позволили повысить энергию начального поля в СВМГ до величин, превышающих джоуль — слишком мала остаточная магнитная индукция даже в лучших материалах, таких как «железо — неодим-бор». А это означало, что ВМГЧ с такой системой создания начального поля будет весьма «длинным» — объем, отведенный под боеприпас, будет использоваться нерационально. Но вспомнили: есть уже отработанное для ЦУВИ устройство, способное дать энергию в десятки тысяч раз большую, чем постоянные магниты. Чтобы использовать такой ценный задел, излучатель необходимо было доработать.
Читать дальшеИнтервал:
Закладка: