Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра
- Название:Пространства, времена, симметрии. Воспоминания и мысли геометра
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание
Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.
Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Двойственность без устойчивости
Имеется только одна философская система, которая не ставит вопроса об устойчивости материальных структур и причинах этой устойчивости. Этой филосовской системой является марксизм.
Основатели марксизма Карл Маркс и Фридрих Энгельс не считали свои взгляды философской системой и, напротив, противопоставляли их философским системам. Маркс в "Тезисах о Фейербахе" писал, что философы пытаются объяснить мир, но дело состоит в том, чтобы изменить его.
Первоначально Маркс и Энгельс были гегельянцами. Став материалистами они отказались от гегелевской Абсоютной идеи, но сохранили некоторые остатки учения Гегеля о диалектическом процессе, вследствие чего их материализм стали называть "диалектическим материализмом". Из учения Гегеля Маркс и Энгельс заимствовали три "закона диалектики" - закон единства и борьбы противоположностей, закон перехода количества в качество и закон отрицания отрицания, который совпадалетс "гегелевской триадой".
В XX веке появилось выражение "философия марксизма". П.С.Юшкевич назвал сборник статей, вышедший под его редакцией, "Очерками по философии марксизма".
В СССР марксизм стал официальной философией, которую должны были изучать студенты и аспиранты всех специальностей. Основатель Советского государства В.И.Ленин и "вождь народов" И.В.Сталин были объявлены "классиками марксизма". Учение Маркса стало теоретической основой пролетарских революций, диктатуры пролетариата и экспансии коммунизма на весь мир.
И.В. Сталин в 1938 г. в "Кратком курсе истории ВКП(б)" заменил "три закона диалектики" "четырьмя характерными чертами" диалектического метода", две из которых совпадают с первыми двумя "законами", а две другие- "всеобщая связь" и "постоянное движение" были заимствованы из книги Н.И.Бухарина "Исторический материализм".
А.И.Солженицын в романе "В круге первом" описывает спор между марксистом Львом Рубиным и националистом Дмитрием Сологдиным, o том всегда ли имеет место закон отрицания отрицания. Рубин не смог ответить на этот вопрос, но я упоминал, что гегелевская триада имеет место не всегда, а только в случае устойчивых явлений. Видимо, именно из за того, что этот закон не является универсальным, он не был включен в число "характарных черт" диалектического метода. Так Сталин расправися с "остатком" гегелевской теории устойчивости явлений.
Отсутствие теории устойчивости в марксизме было одной из причин распада СССР и краха "всесильного учения".
Хотя в самом марксизме теория устойчивости отсутствовала, попытки ее создания имелись у марксистских "еретиков": в "Тектологии - всеобщей организационной науке" А.А.Богданова, в "теории равновесия" Н.И.Бухарина в трудах "меньшевиствующего идеалиста" А.М.Деборина и в "Судьбах марксизма в России" А.Н.Яковлева.
Устойчивость и двойственность в механике
Если механическая система характеризуется n обобщенными координатами qI (I = 1, 2,...n) и обобщенными импульсами pI, то движение системы определяется каноническими уравнениями В.Р.Гамильтона
dqI /dt = ЭН/Эр;, dpI/dt = - ЭИ/dqI, (1) где H - функция Гамильтона равная сумме Т+U кинетической и потенциальной энергии системы.
В общем случае кинетическая энергия системы Т является квадратичной формой Т=- импульсов, а потенциальная энергия системы U является произвольной функцией координат qI. Особенно важен частный случай, когда U также является квадратичной формой координат U=2cIJqIqJ. В этом случае, если р и q - векторы n-мерного пространства с координатами рI и qI, а А и С - линейные операторы того же пространства с матрицами (Аи) и (CIJ), уравнения (1) принимают вид dq/dt = -Ap, dp/dt = - Cq. (2)
Уравнения (2) эквивалентны векторному уравнению
d2q/dt2 + W2q =0, где W2 = AC. (3) Решение уравнения (3) можно записать в вид
q = (cos Wt)q0 + W-1(sIn Wt)(dq/dt)0, (4) где синус и косинус операторного переменного определяются такими же рядами, как и синус и косинус вещественного переменного. Формула (4) показывает, что механическая система, удовлетворяющая указанному условию, эквивалентна n гармоническим осцилляторам.
В случае одного гармонического осциллятора, состоящего из упругой пружины и инертной массы, n = 1 и роль векторов q и р и линейных операторов А, С и W играют вещественные числа, и движение системы является периодическим. В общем случае движение системы является почти периодическим. Таким образом случаю полной двойственности функций Т и U соответствует устойчивое движение системы.
В реальных условиях часть энергии механической системы рассеивается в пространстве и через некоторое время ее движение прекратится, но если в такт колебаниям системы восполнять рассеивающуюся энергию, движение может быть сколь угодно долгим. В общем случае гармонической механической системы ее "коллектор" определяется линейным оператором C, а "рефлектор" - линейным оператором А. Двойственность между "коллектором" и "рефлектором", на которой основано гармоническое движение в механике, тесно связана с двойственностью между обобщенными координатами qI и обобщенными импульсами р! и между кинетической энергиейТ и потенциальной энергией U Левые части уравнений Гамильтона (1) являются скоростями и силами. Поэтому указанная двойственность связана также с двойственностью между скоростями и силами и между кинематическими и динамическими винтами, к которым приводятся системы скоростей и сил.
В специальной теории относительности Эйнштейна пространство и время являются частями единого пространства-времени, и при переходе от одной инерциальной систены координат к другой пространственные и временные координаты выражаются друг через друга. В специальной теории относительности время рассматривается как 4-я координата, а энергия - как 4-я координата вектора импульса. Поэтому двойственность пространственных координат и координат импульсов и обобщенных координат и импульсов qi и рi следует дополнить двойственностью между временем и энергией. При этом, по-видимому, кинетической энергии соответствует настоящее время, а потенциальной энергии - прошедшее и будущее время. Прошедшее и будущее время сливаются, если перейти от обычного времени к циклическому.
Устойчиность и двойственность в электродинамике
Устойчивое движение электромагнитной системы определяется теми же уравнениями (2) и (3), что и устойчивое движение механической системы, где координаты qi вектора q равны количествам электричества в элементах системы, координаты pi вектора р равны электромагнитным импульсам в элементах системы, оператор А характеризует индуктивность системы, а оператор С - электрическую емкость системы.
При n = 1 мы получаем электромагнитный осциллятор - замкнутый электромагнитный контур, в котором роль "коллектора" играет конденсатор, а роль "рефлектора" - катушка самоиндукции. Пара противоположностей, определяющих устойчивость этой системы, - конденсатор и катушка самоидукции, - асимметрична, но конденсатор содержит симметричную пару противоположностей - пару обкладок, заряженных положительным и отрицательным электричеством.
Читать дальшеИнтервал:
Закладка: