Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Тут можно читать онлайн Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биографии и Мемуары. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пространства, времена, симметрии. Воспоминания и мысли геометра
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.88/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра краткое содержание

Пространства, времена, симметрии. Воспоминания и мысли геометра - описание и краткое содержание, автор Борис Розенфельд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.

Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать онлайн бесплатно полную версию (весь текст целиком)

Пространства, времена, симметрии. Воспоминания и мысли геометра - читать книгу онлайн бесплатно, автор Борис Розенфельд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Двойственность без устойчивости

Имеется только одна философская система, которая не ставит вопроса об устойчивости материальных структур и причинах этой устойчивости. Этой филосовской системой является марксизм.

Основатели марксизма Карл Маркс и Фридрих Энгельс не считали свои взгляды философской системой и, напротив, противопоставляли их философским системам. Маркс в "Тезисах о Фейербахе" писал, что философы пытаются объяснить мир, но дело состоит в том, чтобы изменить его.

Первоначально Маркс и Энгельс были гегельянцами. Став материалистами они отказались от гегелевской Абсоютной идеи, но сохранили некоторые остатки учения Гегеля о диалектическом процессе, вследствие чего их материализм стали называть "диалектическим материализмом". Из учения Гегеля Маркс и Энгельс заимствовали три "закона диалектики" - закон единства и борьбы противоположностей, закон перехода количества в качество и закон отрицания отрицания, который совпадалетс "гегелевской триадой".

В XX веке появилось выражение "философия марксизма". П.С.Юшкевич назвал сборник статей, вышедший под его редакцией, "Очерками по философии марксизма".

В СССР марксизм стал официальной философией, которую должны были изучать студенты и аспиранты всех специальностей. Основатель Советского государства В.И.Ленин и "вождь народов" И.В.Сталин были объявлены "классиками марксизма". Учение Маркса стало теоретической основой пролетарских революций, диктатуры пролетариата и экспансии коммунизма на весь мир.

И.В. Сталин в 1938 г. в "Кратком курсе истории ВКП(б)" заменил "три закона диалектики" "четырьмя характерными чертами" диалектического метода", две из которых совпадают с первыми двумя "законами", а две другие- "всеобщая связь" и "постоянное движение" были заимствованы из книги Н.И.Бухарина "Исторический материализм".

А.И.Солженицын в романе "В круге первом" описывает спор между марксистом Львом Рубиным и националистом Дмитрием Сологдиным, o том всегда ли имеет место закон отрицания отрицания. Рубин не смог ответить на этот вопрос, но я упоминал, что гегелевская триада имеет место не всегда, а только в случае устойчивых явлений. Видимо, именно из за того, что этот закон не является универсальным, он не был включен в число "характарных черт" диалектического метода. Так Сталин расправися с "остатком" гегелевской теории устойчивости явлений.

Отсутствие теории устойчивости в марксизме было одной из причин распада СССР и краха "всесильного учения".

Хотя в самом марксизме теория устойчивости отсутствовала, попытки ее создания имелись у марксистских "еретиков": в "Тектологии - всеобщей организационной науке" А.А.Богданова, в "теории равновесия" Н.И.Бухарина в трудах "меньшевиствующего идеалиста" А.М.Деборина и в "Судьбах марксизма в России" А.Н.Яковлева.

Устойчивость и двойственность в механике

Если механическая система характеризуется n обобщенными координатами qI (I = 1, 2,...n) и обобщенными импульсами pI, то движение системы определяется каноническими уравнениями В.Р.Гамильтона

dqI /dt = ЭН/Эр;, dpI/dt = - ЭИ/dqI, (1) где H - функция Гамильтона равная сумме Т+U кинетической и потенциальной энергии системы.

В общем случае кинетическая энергия системы Т является квадратичной формой Т=- импульсов, а потенциальная энергия системы U является произвольной функцией координат qI. Особенно важен частный случай, когда U также является квадратичной формой координат U=2cIJqIqJ. В этом случае, если р и q - векторы n-мерного пространства с координатами рI и qI, а А и С - линейные операторы того же пространства с матрицами (Аи) и (CIJ), уравнения (1) принимают вид dq/dt = -Ap, dp/dt = - Cq. (2)

Уравнения (2) эквивалентны векторному уравнению

d2q/dt2 + W2q =0, где W2 = AC. (3) Решение уравнения (3) можно записать в вид

q = (cos Wt)q0 + W-1(sIn Wt)(dq/dt)0, (4) где синус и косинус операторного переменного определяются такими же рядами, как и синус и косинус вещественного переменного. Формула (4) показывает, что механическая система, удовлетворяющая указанному условию, эквивалентна n гармоническим осцилляторам.

В случае одного гармонического осциллятора, состоящего из упругой пружины и инертной массы, n = 1 и роль векторов q и р и линейных операторов А, С и W играют вещественные числа, и движение системы является периодическим. В общем случае движение системы является почти периодическим. Таким образом случаю полной двойственности функций Т и U соответствует устойчивое движение системы.

В реальных условиях часть энергии механической системы рассеивается в пространстве и через некоторое время ее движение прекратится, но если в такт колебаниям системы восполнять рассеивающуюся энергию, движение может быть сколь угодно долгим. В общем случае гармонической механической системы ее "коллектор" определяется линейным оператором C, а "рефлектор" - линейным оператором А. Двойственность между "коллектором" и "рефлектором", на которой основано гармоническое движение в механике, тесно связана с двойственностью между обобщенными координатами qI и обобщенными импульсами р! и между кинетической энергиейТ и потенциальной энергией U Левые части уравнений Гамильтона (1) являются скоростями и силами. Поэтому указанная двойственность связана также с двойственностью между скоростями и силами и между кинематическими и динамическими винтами, к которым приводятся системы скоростей и сил.

В специальной теории относительности Эйнштейна пространство и время являются частями единого пространства-времени, и при переходе от одной инерциальной систены координат к другой пространственные и временные координаты выражаются друг через друга. В специальной теории относительности время рассматривается как 4-я координата, а энергия - как 4-я координата вектора импульса. Поэтому двойственность пространственных координат и координат импульсов и обобщенных координат и импульсов qi и рi следует дополнить двойственностью между временем и энергией. При этом, по-видимому, кинетической энергии соответствует настоящее время, а потенциальной энергии - прошедшее и будущее время. Прошедшее и будущее время сливаются, если перейти от обычного времени к циклическому.

Устойчиность и двойственность в электродинамике

Устойчивое движение электромагнитной системы определяется теми же уравнениями (2) и (3), что и устойчивое движение механической системы, где координаты qi вектора q равны количествам электричества в элементах системы, координаты pi вектора р равны электромагнитным импульсам в элементах системы, оператор А характеризует индуктивность системы, а оператор С - электрическую емкость системы.

При n = 1 мы получаем электромагнитный осциллятор - замкнутый электромагнитный контур, в котором роль "коллектора" играет конденсатор, а роль "рефлектора" - катушка самоиндукции. Пара противоположностей, определяющих устойчивость этой системы, - конденсатор и катушка самоидукции, - асимметрична, но конденсатор содержит симметричную пару противоположностей - пару обкладок, заряженных положительным и отрицательным электричеством.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Борис Розенфельд читать все книги автора по порядку

Борис Розенфельд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пространства, времена, симметрии. Воспоминания и мысли геометра отзывы


Отзывы читателей о книге Пространства, времена, симметрии. Воспоминания и мысли геометра, автор: Борис Розенфельд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x