Коллектив авторов - Острова утопии. Педагогическое и социальное проектирование послевоенной школы (1940—1980-е)
- Название:Острова утопии. Педагогическое и социальное проектирование послевоенной школы (1940—1980-е)
- Автор:
- Жанр:
- Издательство:Array Литагент «НЛО»
- Год:2015
- Город:Москва
- ISBN:978-5-4448-0394-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Острова утопии. Педагогическое и социальное проектирование послевоенной школы (1940—1980-е) краткое содержание
Острова утопии. Педагогическое и социальное проектирование послевоенной школы (1940—1980-е) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Последнее поколение подростков, учившихся по задачникам Киселева, было выпущено из советских средних школ в 1976 году 527– почти через сто лет после выхода первой книги этого автора (1884)!
Бессистемные реформы 1920-х и «откат» 1930-х в совокупности привели к необычной ситуации в математическом образовании. Математики знали о том, что их дисциплина в СССР востребована – и чем дальше, тем больше. В 1930-е годы в стране быстрыми темпами формировалась огромная группа инженерно-технических работников, призванных заменить техническую интеллигенцию, получившую образование до революции 528. Сама математическая наука интенсивно развивалась. Ученые-математики знали, что подготовку одаренной молодежи можно начинать достаточно рано и что методики, пригодные для ее обучения, обсуждались еще до революции. Однако на школьное образование они положиться не могли. Существенно, что отказ от любых попыток синтетического подхода и сведение математики к сумме сложных навыков никак идеологически не обосновывались официальными инстанциями, и поэтому, призывая реформировать школьное преподавание, математики не нарушали никаких особо болезненных советских табу.
Уже к середине 1930-х годов ученые пришли к мысли о том, что положение с подготовкой школьников можно исправить только собственными силами. Для этого они создали «обходные» социальные институции, позволявшие находить математически одаренную молодежь и вовлекать ее в сотрудничество с «взрослыми» специалистами. Такими институциями стали математические олимпиады и кружки, которые можно назвать педагогической и социальной базой для формирования специализированных школ конца 1950-х.
Математические олимпиады – соревнования на лучшее и наиболее убедительное решение сложных задач. Главная особенность олимпиад заключалась в том, что предлагавшиеся там задачи требовали не столько дополнительных знаний, сколько навыков и способностей к новаторскому или, по крайней мере, нешаблонному мышлению, а в идеале – восприятия математики как целостной системы мышления. По словам математика и писателя Владимира Губайловского, «эти задачи требуют… умения так повернуть условия, чтобы вдруг проявился… неожиданный, укрывшийся в условиях порядок. Человек, даже очень хорошо выучивший школьный курс, но не понявший, как же соотносятся части того целого, которое называется языком математики (пускай даже самого начального), часто не может решить простой задачи, с какой легко справляется шестиклассник на [математическом] кружке» 529.
Первая олимпиада для школьников по математике прошла в Ленинграде в 1934 году, в 1935-м аналогичная олимпиада была проведена в Москве. Об этих соревнованиях существует обширная мемуарная и методическая литература, изданы использовавшиеся на них задачи 530.
Олимпиады в «двух столицах» проводились каждый год, кроме 1942-го и 1943-го 531.
Первоначально к участию в олимпиаде допускались только школьники выпускных классов и ученики рабфаков, но уже в конце 1930-х появились задания для школьников более младших классов – вплоть до 6-го 532.
Председателем оргкомитета I Московской олимпиады стал ученик Лузина Павел Александров, а ее оргкомитет был создан под эгидой Московского математического общества.
Необходимость проведения олимпиады Александров обосновывал следующим образом:
Основная забота о будущем советской науки требует, чтобы ни одно математическое дарование <���…> не затерялось зря. <���…> …Состязание должно заставить лучших из них (школьников. – М.М., И.К .) почувствовать себя уже настоящими математиками, будущими учеными. Оно должно укрепить их веру в себя, зажечь их научный энтузиазм и в то же время заставить их почувствовать, что лишь длинный путь упорной работы приведет их к цели, к участию в качестве квалифицированных математиков, а иногда и больших самостоятельных ученых в той громадной стройке социализма, которая развернулась в нашей стране 533.
В том же тексте образцом для олимпиад Александров называл социалистическое соревнование. В СССР этот тип морального стимулирования широко пропагандировался с 1929 года – после выхода статьи И. Сталина «Соревнование и трудовой подъем масс» 534. Однако характерно, какого рода награды доставались победителям детских математических соревнований: это были не символические знаки или медали. По воспоминаниям одного из участников, в середине 1940-х, хотя, вероятно, и раньше, в 1930-е «…премия на Олимпиаде выдавалась… в виде грамоты и стопки математических книг. Первая премия была столь обширна, что, как правило, стопка рассыпáлась, пока счастливый победитель нес ее, придерживая подбородком, от стола президиума к своему месту в зале» 535.
Во время ленинградских олимпиад профессора ЛГУ читали лекции для школьников. И эта практика, и формы награждения победителей московских олимпиад показывают, что важнейшей функцией этих институций было скорейшее вовлечение талантливых школьников во «взрослую» математику.
Ленинградская олимпиада была основана на опыте работы Научной станции для одаренных подростков, основанной в 1933 году 536, но в Москве такой системы не было. В том же 1934 году, когда в Ленинграде была проведена первая олимпиада, при Московском университете был создан и кружок для школьников. Его возглавил 21-летний аспирант Колмогорова Израиль Гельфанд (1913 – 2009), впоследствии – один из крупнейших математиков ХХ века. Не получивший высшего математического образования, Гельфанд в силу исключительных способностей еще в 1932 году (в 19 лет!) был допущен к преподаванию в МГУ – через год после того, как без диплома поступил в аспирантуру.
Кружок Гельфанда в течение полутора лет был единственной московской математической институцией подобного рода. Однако после олимпиады 1935 года в Москве было организовано еще несколько кружков. Их собрания состояли преимущественно из докладов участников – школьников и руководителей кружков, чаще всего – аспирантов или студентов-старшекурсников.
Принципиально новую концепцию кружковой работы создал Давид Шклярский (1918 – 1942). В 1936 году он стал одним из победителей II Московской олимпиады, в том же году поступил в МГУ, с 1937 года вел кружок, в 1938 – 1941 годах был руководителем математических кружков при МГУ. Одним из участников кружка Шклярского был юный Андрей Сахаров 537. В 1942 году Шклярский погиб при выполнении боевого задания – он был заброшен в немецкий тыл и стал бойцом партизанского отряда, действовавшего на территории Белоруссии.
Если Лузин может быть назван прадедушкой математических спецшкол в СССР, то Шклярский – их педагогическим «дедом». Созданная им методика описана в мемуарах знавших его людей и кратко изложена в неподписанной биографической справке на сайте «История математики».
Читать дальшеИнтервал:
Закладка: