Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости
- Название:Чёрный лебедь. Под знаком непредсказуемости
- Автор:
- Жанр:
- Издательство:КоЛибри
- Год:2009
- Город:Москва
- ISBN:978-5-389-00573-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Нассим Талеб - Чёрный лебедь. Под знаком непредсказуемости краткое содержание
За одно только последнее десятилетие человечество пережило ряд тяжелейших потрясений: 11 сентября 2001 года, война в Осетии, мировой финансовый кризис. Все эти события, представляющиеся нам сейчас закономерными, казались абсолютно невозможными, пока они не произошли. Сорокадевятилетний ливанец, выпускник Сорбонны и нью-йоркский финансовый гуру Нассим Талеб называет такие непредсказуемые происшествия Черными лебедями. Он убежден: именно они дают толчок как истории в целом, так и существованию каждого отдельного человека. И чтобы преуспеть, надо знать, как с ними обращаться. Сразу после выхода этой книги автор блестяще продемонстрировал свою «не-теорию» на практике: на фоне финансового кризиса компания Талеба заработала (а не потеряла!) для инвесторов полмиллиарда долларов.
Из главного еретика Уолл-стрит, который в одиночку выступил против легиона футурологов и аналитиков, Нассим Талеб превратился в фигуру, чье влияние распространяется далеко за пределы финансового мира.
Чёрный лебедь. Под знаком непредсказуемости - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Такие построения играют заметную роль в искусстве. Вот несколько примеров:
Визуальные искусства. Сейчас в основе большинства объектов компьютерной графики лежит та или иная разновидность мандельбротова фрактала. Фракталы также встречаются в архитектуре и живописи — разумеется, неосознанно включенные художниками в структуру произведения.
Музыка. Медленно напойте первые четыре ноты Пятой симфонии Бетховена: «Та-та-та-та!» Затем замените каждую отдельную ноту тем же самым началом из четырех нот, так что получится такт из шестнадцати нот. Вы увидите (вернее, услышите), что каждая маленькая волна напоминает исходную большую. У Баха и Малера, например, музыкальная тема часто состоит из нескольких подтем, похожих на нее.
Поэзия. Поэзия Эмили Дикинсон, к примеру, фрактальна: крупное напоминает мелкое. Поэтесса, по мнению комментатора, «плетет продуманный узор из слов, размеров, рефренов, движений и звуков».
Сначала фракталы сделали Бенуа М. парией в математическом истеблишменте. Французские математики были в ужасе. Что? Картинки? Mon dieu! Это все равно что показать порнофильм собранию набожных православных бабушек в моем родном Амиуне. Поэтому Мандельброт некоторое время оставался интеллектуальным изгоем, работая в исследовательском центре «Ай-би-эм» на севере штата Нью-Йорк. Это было типичное «в ж… деньги!», так как айбиэмовское жалованье позволяло ему заниматься чем хочется.
Но масса людей (прежде всего компьютерщиков) сразу схватила суть. Книга Мандельброта «Фрактальная геометрия природы», вышедшая в свет четверть века назад, произвела настоящий фурор. Ею зачитывались в художественных кругах, она дала толчок новым идеям в искусстве, в архитектурном дизайне, даже крупным индустриальным проектам. Мандельброту предложили место профессора медицины! Может статься, легкие самоподобны? На лекции Бенуа М. ломом ломились художники и артисты, за что его прозвали «рок-звездой математики». Компьютерный век помог ему стать одним из самых востребованных математиков в истории, причем гораздо раньше, чем он был признан обитателями башни из слоновой кости. Мы вскоре увидим, что его теория, вдобавок к универсальности, обладает одним необычным свойством: она на редкость проста для понимания.
Несколько слов о его биографии. Мандельброт приехал во Францию из Варшавы в 1936 году, в двенадцать лет. Из-за тягот нелегальной жизни в оккупированной нацистами Франции он, учась в основном самостоятельно, отчасти избежал традиционного галльского образования с его отупляющей зубрежкой алгебры. Позже на него сильно повлиял его дядя Шолем, видный представитель французского математического истеблишмента, возглавлявший кафедру в Коллеж де Франс. Поселившись в Соединенных Штатах, Бенуа М. работал в основном как ученый-прикладник, лишь спорадически занимая академические должности.
Компьютер играл две роли в новой науке, становлению которой помог Мандельброт. Во-первых, фрактальные объекты, как мы видели, могут генерироваться путем применения простого правила к самому себе, что идеально подходит для автоматической деятельности компьютера (или матери-природы). Во-вторых, в процессе генерирования интуитивных образов происходит постоянная притирка между математиком и создаваемыми объектами.
Посмотрим теперь, какое отношение все это имеет к случайности. Если быть точным, карьера Мандельброта началась именно с вероятности.
Визуальный подход к Крайнестану/Среднестану
Я смотрю на ковер в своем кабинете. Если я буду изучать его через микроскоп, то увижу пересеченную местность. Если я стану разглядывать его через увеличительное стекло, то местность покажется мне более ровной, но все же весьма ухабистой. Но когда я смотрю на него с высоты своего роста, он выглядит почти таким же гладким, как лист бумаги. Ковер, обозреваемый невооруженным глазом, соответствует Среднестану и закону больших чисел: я вижу сумму волнистостей, которые сглаживаются. Это как гауссова случайность: моя чашка с кофе не подпрыгивает на столе, потому что суммарное движение всех ее частиц оборачивается стабильностью. Таким же образом, суммируя маленькие гауссовы неопределенности, получаешь определенность: это закон больших чисел.
Гауссиана не самоподобна, и поэтому моя кофейная чашка не прыгает.
Рассмотрим теперь прогулку в горы. Как высоко ни поднимешься над поверхностью земли, она будет оставаться неровной. Даже при взгляде с высоты 30 ооо футов. Когда летишь над Альпами, вместо маленьких камешков видишь зазубренные вершины. Значит, некоторые поверхности — не из области Среднестана и изменение масштаба не приводит к их сглаживанию. (Заметим, что эффект выравнивания достигается, только если подняться на еще большую высоту. Наша планета представляется гладким шаром тем, кто наблюдает за ней из космоса, но это потому, что она слишком маленькая. Будь Земля крупнее, на ней нашлись бы горы, превосходящие по высоте Гималаи, и потребовалась бы еще большая удаленность от нее, чтобы их очертания стерлись. Точно так же, живи на Земле больше людей, пусть даже с тем же средним достатком, наверняка нашелся бы кто-то, чей капитал перекрыл бы состояние Билла Гейтса.)
Рисунки и и 12 иллюстрируют эту идею: глядя на первый рисунок, можно подумать, что на землю упала крышка от объектива.


Вернемся к нашему краткому упоминанию побережья Британии. Если взглянуть на него с самолета, контуры не будут так уж отличаться от контуров, видимых с ближайшего обрыва. Изменение масштаба не меняет формы или степени гладкости.
Бисер перед свиньями
Но какое отношение фрактальная геометрия имеет к распределению капитала, величине городов, обороту финансовых рынков, потерям на войне или размеру планет? Давайте соединим точки.
Ключ здесь в том, что у фрактала есть числовая, или статистическая, размерность, которая (более или менее) сохраняется при изменении масштаба, — пропорции (в отличие от гауссианы) постоянны. Другой пример такого самоподобия представлен на рисунке 13. Как мы знаем из главы 15, сверхбогатые сходны с богатыми, только богаче, — богатство масштабно-независимо, или, вернее, о его зависимости ничего не известно.
В 1960-е годы Мандельброт изложил свои идеи о ценах на предметы потребления и акции экономической элите, и экономисты-финансисты пришли в восторг. В 1963 году тогдашний декан бизнес-магистратуры университета Чикаго Джордж Шульц предложил ему место профессора. Это тот самый Джордж Шульц, который позже стал госсекретарем Рональда Рейгана.
Читать дальшеИнтервал:
Закладка: