Lokky - Хакеры сновидений: Архив 1-6
- Название:Хакеры сновидений: Архив 1-6
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Lokky - Хакеры сновидений: Архив 1-6 краткое содержание
Давным-давно, один парнишка по имени Kor, начал собирать и редактировать материалы по различным изысканиям хакеров сновидений. Потом он куда-то пропал, но нашлись другие, кто подхватил эстафету начатую им. Все это вылилось в данный архив, который продолжает пополнятся каждый день.
Хакеры сновидений: Архив 1-6 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Явная корреляция с предсказателем переходов, который решает, какую из следующих операций вычислять
Вообще я думаю идею суперскалярности можно как-то прикрутить к сюжетам и событиям...
nexus, можно подробнее разжевать смысл этой формулы? Точнее смысл этого графа. Или пример привести? Я так понимаю, что дуги будут весовые. Вес это интенсивность I[m, i] или интенсивность I[i]?
Что с этим графом делать? Находить кратчайший путь, или что-то ещё?
Если дугами будут сами потоки, то какое к графу имеют отношение вычисленные значения p[m]?
И ещё неясно: почему “I [i]“ характеризует число событий, приводящих к включению(выключению), а “I [m, i]” скорость поступления событий включения(выключения)? Т.е. в одном случае, число событий, а в другом скорость поступления событий? Ведь скорость должно быть число/время.
nexus (#38, 2005-06-02, 19:25:50 )
rezuq,
>у меня возникла ассоциация с современными суперконвеерными процессорами: одновременно запускаются выполнения команд, которые идут последовательно (не путать с параллелизмом!)...
Вообще я думаю идею суперскалярности можно как-то прикрутить к сюжетам и событиям...
>
Посмотрел в инете немного по этому поводу, мысль твою вроде уловил -- в принципе согласен что такой вариант имеет возможность реализации и скорее реализуется. Вспомнил также что СИД на сайте www.lonebird.ru продвигает мысль об отличиях в сепарабельности и несепарабельности явлений реала. Хотя он и поклонник несепарабельных процессов, я замечу что принцип разделимости -- это же принцип сепарабельности или иначе как аддитивности. Насколько мне известно из физики, сепарабельность или аддитивность довольно распрастранены среди физических явлений природы, значит мы вправе ожидать это и в области сюжетов. Остается только отыскать наглядные примеры перераспределения операций и данных в мире событий. Я вот так с лету не могу сообразить. :(
>и последующая зависит от предыдущей,
>
Эффект последействия! Большинство случайных событий, происходящих в реале, не обладают эффектом последействия, однако из жизненного опыта можно подчеркнуть также и большое количество событий с последействием. Таким образом, можно констатировать возможное наличие двух процессов: с одной стороны именно суперскалярность (последовательное с перераспределением операций и данных), а с другой стороны параллелизм также вклинивается в повседневность. Надо понять как они разруливаются между собой. ;) Вот ща вдруг вспомнил что же упоминал в “Реставрация хакерос - II“ про такие конструкции как симметр и антисимметр -- как раз пример рапаралеливаемых событий (параллелизм) и суперскалярных событий. Учтём ещё что отношение симметрии как правило присуще классу эквивалентности, а точнее там где можно отыскать непересекающиеся подмнжества, тогда как антисимметрия -- порядку. Между этими тенденциями должен быть какой-то балланс. Есть мысли? Когда возникает необходимость одновременно держать две возможности: последовательные вычисления и параллелизм?
>причём существует предсказатель переходов, (чтобы не выполнять зря маловероятно нужную команду), в зависимости от результата выполнения первой команды, результат второй либо сбрасывается, либо уже готов!
Явная корреляция с предсказателем переходов, который решает, какую из следующих операций вычислять
>
В бытовом реале такой предсказатель переходов реализован скорее через “интуицию“. Значит интуиция точно участвует в конвеерных обсчётах сюжетов. Мысль промелькнула: что если параллелизм реализуется (обсчитывается) тональю (Матрицей), тогда как суперскалярность же реализуется через осознание (в смысле виртуальной машины) -- тогда получаем два в одном флаконе: Матрица взаимодействуя с осознанием, порождает всё многообразие воспринимаемых миров. В результате, темное море осознания (Орёл) -- система параллелизма в вычислениях, тогда как осознание человека -- это суперскалярность.
nexus (#39, 2005-06-02, 20:35:34 )
rezuq,
>Что с этим графом делать? Находить кратчайший путь, или что-то ещё?
>
Скорее всего отыскать экстремум -- в данном случае максимальное время пребывния (предельная вероятность) и в каком из состояний. Вообще, написанные мною формулы пока лишь частный сучай для предельного времени случайного процесса -- его асимптотика в область стационарного режима. В общем случае уравнения зависят от времени, но там алгебраические уравнения выше 4-ого, а их надо ломать численно и пока на это времени нету, чтобы прогу сообразить на все случаи или отыскать в инете. Позже займусь.
>Я так понимаю, что дуги будут весовые. Вес это интенсивность I[m, i] или интенсивность
>
Ты прав, это ориентированный граф с весовыми дугами, где весом является интенсивность I[i]. Что же касательно интенсивностей I[m, i], то это те же самые интенсивности I[i], только выбираются они по принципу что берём только те из них, которые являются входящими для данного узла.
>И ещё неясно: почему “I [i]“ характеризует число событий, приводящих к включению(выключению), а “I [m, i]” скорость поступления событий включения(выключения)? Т.е. в одном случае, число событий, а в другом скорость поступления событий? Ведь скорость должно быть число/время.
>
Недосмотрел. :( Размерность интенсивностей везде будет являться “число событий на время“ -- то есть это скорость поступления событий.
>Если дугами будут сами потоки, то какое к графу имеют отношение вычисленные значения p[m]?
>
Ты прав: дуги и есть потоки событий. Предполагается что потоки задаются изначально в виде характеристической матрицы графа или иначе как матрица переходов. Её как правило довольно легко наблюдать на опыте. Поэтому задача сводиться определить в каком из состояний (то есть в каком узле графа) система будет находиться в тот или иной момент времени. Это будет определяться вероятностью каждого из состояния. Я пока просчитал для стационарного процесса в общем виде. В стационарном процессе вероятность каждого состояния p[m] представляет собой ничто иное как среднее время прибывания системы в данном состоянии.
>можно подробнее разжевать смысл этой формулы? Точнее смысл этого графа. Или пример привести?
>
Рассмотрю пример с одним параметром A = (a). Система с одним параметром может принять два возможных состояния a=0 и a=1, то есть состояние с “выключенным“ параметром “a“ и состояние с “включенным“ параметром “a“. Булеан состоит из двух элементов, значит в графе всего два узла, соединённых двумя дугами. Один узел представляет собой состояние Ф[0], то есть когда a=0, тогда как другой узел -- состояние Ф[1], когда a=1. Каждая дуга представляет поток событий. Существует таким образом всего два потока: “П+” -- поток, направленный от состояния Ф[0] к Ф[1] и включающий параметр “a“; “П-” -- поток, направленный от состояния Ф[1] к Ф[0] и выключающий параметр “a“. Данные потоки характеризуются соответствующими интенсивностями: “I+“ -- интенсивность потока “П+”; “I-“ -- интенсивность потока “П-”. Теперь о входящих потоках. Для узла Ф[0] входящим потоком будет “П-”, а для узла Ф[1] -- поток “П+”. Таким образом: интенсивность входящего в состояние Ф[0] потока будет равна I [0,...] = “I-“, тогда как интенсивность входящего с состояние Ф[1] потока будет равна I [1,...] = “I+“. Здесь под “...“ особенно ничего не подразумевается в случае одного параметра, однако если параметров более одного, то подразумевается индекс входящего потока в узел! Как ты понимешь в случае одного параметра количество входящих потоков в некоторый узел также будет равно единице. Сколько параметров, столько и входящих потоков у узле! В результате, формулы приобретают следующий вид:
Читать дальшеИнтервал:
Закладка: