Коллектив авторов - Большая энциклопедия техники
- Название:Большая энциклопедия техники
- Автор:
- Жанр:
- Издательство:Array Литагент «Научная книга»
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Большая энциклопедия техники краткое содержание
Большая энциклопедия техники - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Поскольку сила тяги РВ и уровень нагрузки хвостовой трансмиссии пропорциональны плотности наружного воздуха, в системе путевого управления иногда устанавливают подвижный упор, автоматически ограничивающий максимальный угол установки лопастей рулевого винта при уменьшении температуры и увеличении давления наружного воздуха. При уменьшении плотности (увеличении температуры) наружного воздуха подвижный упор автоматически убирается.
В современном вертолетостроении в последнее время часто используют многолопастный РВ в кольцевом канале киля (фенестрон). Такая конструкция имеет несколько существенных преимуществ: уменьшается вредное сопротивление вертолета, предотвращаются задевание вращающимися лопастями РВ за наземные естественные препятствия при маневрировании на предельно допустимых малых высотах, а также травмирование при работе летательного аппарата на земле. Эффективность фенестрона существенно выше, чем открытого рулевого винта при равных диаметрах крыльчатки, поскольку диаметр фенестрона в 2 раза меньше, чем диаметр открытого рулевого винта. Он требует для создания одинаковой тяги большей мощности. Кроме того, выпускают вертолеты с так называемым Х-образным, четырехлопастным рулевым винтом. РВ такого типа обладает превосходством перед обычным (с равномерным азимутальным распределением лопастей) по уровню шума и уменьшению неблагоприятного воздействия на лопасти концевых вихревых шнуров, генерируемых соседними лопастями.
Основной расчетный режим вращения РВ – зависание летательного аппарата. В режиме зависания рулевой винт создает максимальную для существующих режимов полета вертолета силу тяги, которая требуется для уравновешивания реактивного момента НВ. Существует оригинальное конструкторское решение компенсации реактивного момента – NOTAR (NoTail Rotor – без рулевого винта).
Вместо рулевого винта на килевой части хвостовой балки устанавливается специальный агрегат, в сопла которого подается воздух от вентилятора, установленного в кормовой балке и имеющего привод от силовой установки.
Струйная система путевого управления и компенсации реактивного момента обеспечивает достаточно высокую маневренность и снижает уровень вибраций.
В конце 1970-х гг. эксперименты по созданию летательного аппарата без рулевого винта начались в США. Впервые эта концепция была применена на базе вертолета ОН-6А, первый полет которого проводился в декабре 1981 г. К достоинствам одновинтовой схемы относят относительную простоту агрегата и дешевизну конструкции. Одним из главных недостатков одновинтовой схемы расположения является срыв потока на отступающей лопасти, проявляющийся на больших расчетных скоростях. Именно это основная причина, ограничивающая скорость полета летательного аппарата. Следует обратить внимание также на возможность перехлеста лопасти НВ с кормовой балкой на некоторых одновинтовых летательных аппаратах. Данная опасность вполне реальна в первую очередь при нахождении вертолета в земном положении в случаях раскрутки, замедлении и остановки НВ при сильном ветре и взаимного влияния НВ соседних вертолетов и других типов летательных аппаратов на стоянке; при действии на несущий винт нисходящего потока от другого вертолета, пролетающего над вертолетной площадкой на высоте более 40 м.
В полете такая опасность возникает вследствие активного торможения резким переводом вертолета из пикирования в кабрирование (при больших скоростях горизонтального полета), турбулентности атмосферы и режима вихревого кольца. Для избежания перехлеста лопасти с кормовой балкой запрещается снижать обороты НВ ниже допустимых пределов для сохранения допустимого угла конуса лопасти НВ.
Соосная схема НВ двухвинтового летательного аппарата – это два винта одинакового диаметра, расположенных на одной оси и вращающихся в противоположные стороны. Реактивные моменты верхнего и нижнего винтов взаимно уравниваются. Верхний и нижний винты в соосной схеме разнесены по вертикали для предотвращения схлестывания лопастей. Верхний винт засасывает воздух из воздушного пространства и создает поток, отбрасываемый на нижний винт. Воздействие потока верхнего винта вызывает уменьшение угла атаки и, соответственно, подъемной силы нижнего винта. Последствием сужения нисходящего потока, отбрасываемого верхним винтом, радиально удаленные участки лопастей нижнего винта работают на режимах, подобных верхним лопастям, при этом радиально удаленные участки лопастей нижнего винта засасывают небольшое количество воздуха из окружающего пространства.
Соосный НВ вовлекает в движение воздушную массу, на 20% большую, чем НВ летательного аппарата одновинтовой схемы расположения. Так как воздушный поток верхнего винта закручен в противоположную сторону вращению нижнего винта, окружные скорости обтекания сечений лопастей нижнего винта возрастают на величину скорости закрутки, что значительно улучшает аэродинамическую эффективность соосной схемы. Аэродинамическая эффективность соосной винтовой схемы всегда на 3—10% выше, чем у НВ вертолета одновинтовой схемы. Диаметр соосного НВ несколько меньше, чем у одновинтового, поэтому в режиме зависания при одинаковых условиях соосный вертолет требует несколько большей мощности силовой установки, чем одновинтовой. Практически же отсутствие РВ и хвостовой трансмиссии обеспечивает соосному вертолету значительно меньшую массу собственной конструкции и большую удельную массу полезной нагрузки при равной с сопоставимым одновинтовым вертолетом полетной массе, а отсутствие затрат мощности силовой установки на привод РВ (на одновинтовых вертолетах затраты составляют около 10% от мощности двигателей) – больший статический потолок при одинаковой мощности двигателей и полетной массе. При зависании на равной малой высоте от колес шасси до поверхности земли положительное воздействие воздушной подушки оказывается меньшим, чем для одновинтового летательного аппарата.
В режиме горизонтального полета на высокой скорости соосный НВ имеет более высокое лобовое сопротивление, чем одновинтовой НВ, что понижает максимальную скорость полета летательных аппаратов соосной схемы. Курсовое управление вертолетом (развороты и повороты) осуществляется в основном дифференциальным (раздельным) изменением реактивных моментов несущих винтов и отклонением рулей направления (размещенных на киле), а продольно-поперечное управление – одновременным изменением направления тяги верхнего и нижнего винтов. Важной особенностью соосного вертолета является установка двух автоматов перекоса на одной колонке. Для обеспечения путевой балансировки вертолета, выравнивания крутящих моментов винтов при нейтральном положении педалей управления на режиме зависания углы атаки лопастей нижнего винта преимущественно несколько больше, чем у верхнего винта. Принципиальное значение для соосной несущей системы играет расстояние между втулками верхнего и нижнего винтов. Увеличение этого расстояния утяжеляет и усложняет конструкцию колонки НВ, ухудшает устойчивость вертолета на земле. Уменьшение же данной величины вызывает опасное сближение лопастей винтов. Поэтому разработчики добиваются компромиссного решения, наилучшим образом удовлетворяющего противоречивым требованиям аэродинамики, динамической прочности и надежности вертолета.
Читать дальшеИнтервал:
Закладка: