БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ)

Тут можно читать онлайн БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Энциклопедии. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Большая Советская Энциклопедия (ВЕ)
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4.75/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

БСЭ БСЭ - Большая Советская Энциклопедия (ВЕ) краткое содержание

Большая Советская Энциклопедия (ВЕ) - описание и краткое содержание, автор БСЭ БСЭ, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Большая Советская Энциклопедия (ВЕ) - читать онлайн бесплатно полную версию (весь текст целиком)

Большая Советская Энциклопедия (ВЕ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

где z ( l ) случайная функция с независимыми приращениями). В то же время схема стационарных процессов с хорошим приближением описывает многие физические явления.

Теория случайных процессов тесно связана с классической проблематикой предельных теорем для сумм случайных величин. Те законы распределения, которые выступают при изучении сумм случайных величин как предельные, в теории случайных процессов являются точными законами распределения соответствующих характеристик. Этот факт позволяет доказывать многие предельные теоремы с помощью соответствующих случайных процессов.

Историческая справка. В. т. возникла в середине 17 в. Первые работы по В. т., принадлежащие французским учёным Б. Паскалю и П. Ферма и голландскому учёному X. Гюйгенсу, появились в связи с подсчётом различных вероятностей в азартных играх. Крупный успех В. т. связан с именем швейцарского математика Я. Бернулли, установившего закон больших чисел для схемы независимых испытаний с двумя исходами (опубликовано в 1713).

Следующий (второй) период истории В. т. (18 в. и начало 19 в.) связан с именами А. Муавра (Англия), П. Лапласа (Франция), К. Гаусса (Германия) и С. Пуассона (Франция). Это — период, когда В. т. уже находит ряд весьма актуальных применений в естествознании и технике (главным образом в теории ошибок наблюдений, развившейся в связи с потребностями геодезии и астрономии, и в теории стрельбы). К этому периоду относится доказательство первых предельных теорем, носящих теперь названия теорем Лапласа (1812) и Пуассона (1837); А. Лежандром (Франция, 1806) и Гауссом (1808) в это же время был разработан способ наименьших квадратов.

Третий период истории В. т. (2-я половина 19 в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова и А. А. Маркова (старшего). В. т. развивалась в России и раньше (в 18 в. ряд трудов по В. т. был написан работавшими в России Л. Эйлером, Н. Бернулли и Д. Бернулли; во второй период развития В. т. следует отметить работы М. В. Остроградского по вопросам В. т., связанным с математической статистикой, и В. Я. Буняковского по применениям В. т. к страховому делу, статистике и демографии). Со 2-й половины 19 в. исследования по В. т. в России занимают ведущее место в мире. Чебышев и его ученики Ляпунов н Марков поставили и решили ряд общих задач в В. т., обобщающих теоремы Бернулли и Лапласа. Чебышев чрезвычайно просто доказал (1867) закон больших чисел при весьма общих предположениях. Он же впервые сформулировал (1887) центральную предельную теорему для сумм независимых случайных величин и указал один из методов её доказательства. Другим методом Ляпунов получил (1901) близкое к окончательному решение этого вопроса. Марков впервые рассмотрел (1907) один случай зависимых испытаний, который впоследствии получил название цепей Маркова.

В Западной Европе во 2-й половине 19 в. получили большое развитие работы по математической статистике (в Бельгии — А. Кетле, в Англии — Ф. Гальтон) и статистической физике (в Австрии — Л. Больцман), которые наряду с основными теоретическими работами Чебышева, Ляпунова и Маркова создали основу для существенного расширения проблематики В. т. в четвёртом (современном) периоде её развития. Этот период истории В. т. характеризуется чрезвычайным расширением круга её применений, созданием нескольких систем безукоризненно строгого математического обоснования В. т., новых мощных методов, требующих иногда применения (помимо классического анализа) средств теории множеств, теории функций действительного переменного и функционального анализа. В этот период при очень большом усилении работы по В. т. за рубежом (во Франции — Э. Борель, П. Леви, М. Фреше, в Германии — Р. Мизес, в США — Н. Винер, В. Феллер, Дж. Дуб, в Швеции — Г. Крамер) советская наука продолжает занимать значительное, а в ряде направлений и ведущее положение. В нашей стране новый период развития В. т. открывается деятельностью С. Н. Бернштейна, значительно обобщившего классические предельные теоремы Чебышева, Ляпунова и Маркова и впервые в России широко поставившего работу по применениям В. т. к естествознанию. В Москве А. Я. Хинчин и А. Н. Колмогоров начали с применения к вопросам В. т. методов теории функций действительного переменного. Позднее (в 30-х гг.) они (и Е. Е. Слуцкий) заложили основы теории случайных процессов. В. И. Романовский (Ташкент) и Н. В. Смирнов (Москва) поставили на большую высоту работу по применениям В. т. к математической статистике. Кроме обширной московской группы специалистов по В. т ., в настоящее время в СССР разработкой проблем В. т. занимаются в Ленинграде (во главе с Ю. В. Линником) и в Киеве.

Лит.: Основоположники и классики теории вероятностей.Bernoulli J., Ars conjectandi, opus posthumum, Basileae, 1713 (рус. пер., СПБ. 1913); Laplace [P. S.], Théorie analytique des probabilités, 3 éd.. P., 1886 (CEuvres complétes de Laplase, t. 7, livre 1—2); Чебышев П. Л., Поли. собр. соч., т. 2-3, М. — Л., 1947—48; Liapounoff A., Nouvelle forme du théoréme sur la limite de probabilité, СПБ, 1901 («Зап. АН по физико-математическому отделению, 8 серия», т. 12, №5); Марков А. А., Исследование замечательного случая зависимых испытаний, «Изв. АН, 6 серия», 1907, т 1 М 3.

Популярная и учебная литература.Гнеденко Б. В. и Хинчин А. Я., Элементарное введение в теорию вероятностей, 3 изд., М. — Л., 1952; Гнеденко Б. В., Курс теории вероятностей, 4 изд., М., 1965; Марков А. А., Исчисление вероятностей, 4 изд., М., 1924; Бернштейн С. Н., Теория вероятностей, 4 изд., М. — Л., 1946; Феллер В., Введение в теорию вероятностей и её приложение (Дискретные распределения), пер. с англ., 2 изд., т. 1—2, М., 1967.

Обзоры и монографии. Гнеденко Б. В. и Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за тридцать лет. 1917—1947. Сб. ст., М. — Л., 1948; Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за сорок лет. 1917—57. Сб. ст., т. 1, М., 1959; Колмогоров А. Н., Основные понятия теории вероятностей, пер. с нем., М.—Л., 1936; его же, Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5, с. 5—41; Хинчин А. Я., Асимптотические законы теории вероятностей, пер. с нем., М.—Л., 1936; Гнеденко Б. В. и Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.—Л., 1949; Дуб Дж. Л., Вероятностные процессы, пер. с англ., М., 1956: Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, М., 1967.

Ю. В. Прохоров, Б. А. Севастьянов.

Вероятностная бумага

Вероя'тностная бума'ганормальная, специальным образом разграфленная бумага, построенная так, что график функции нормального распределения изображается на ней прямой линией. Это достигается изменением шкалы на вертикальной оси (см. рис. ). На свойстве «выпрямления» основан простой способ проверки гипотезы о принадлежности данной выборки к нормальной совокупности: если построенная на В. б. эмпирическая функция распределения хорошо приближается прямой линией, то можно с основанием полагать, что совокупность, из которой взята выборка, является приближённо нормальной. Достоинство этого метода состоит в том, что вывод о принадлежности к нормальной совокупности можно сделать без знания численных значений параметров гипотетического распределения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

БСЭ БСЭ читать все книги автора по порядку

БСЭ БСЭ - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Большая Советская Энциклопедия (ВЕ) отзывы


Отзывы читателей о книге Большая Советская Энциклопедия (ВЕ), автор: БСЭ БСЭ. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x