БСЭ БСЭ - Большая Советская Энциклопедия (ТУ)
- Название:Большая Советская Энциклопедия (ТУ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ТУ) краткое содержание
Большая Советская Энциклопедия (ТУ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Турбомолекулярный насос
Турбомолекуля'рный насо'с, вакуумный насос, действие которого основано на сообщении молекулам откачиваемого газа дополнительной скорости в направлении их движения вращающимся ротором. Ротор состоит из системы дисков. Вакуум, получаемый Т. н., до 10 – 8 н/м 2 (10 -10 мм рт. ст. ) .
Турбонасосный агрегат
Турбонасо'сный агрега'т,агрегат системы подачи жидких компонентов ракетного топлива или рабочего тела в жидкостном ракетном двигателе либо жидкого горючего в некоторых авиационных двигателях (например, в прямоточном воздушно-реактивном двигателе ) . Т. а. состоит из одного или нескольких насосов и приводящей их авиационной газовой турбины. Рабочее тело турбины Т. а. обычно образуется в газогенераторах или парогазогенераторах. Жидкостные ракетные двигатели с Т. а. применяются в ракетах-носителях космических аппаратов и межконтинентальных ракетах.
Турбопоезд
Турбопо'езд,поезд из одного или нескольких вагонов, часть из которых моторные, оборудованные газотурбинными двигателями. Т. экономичны, характеризуются высокими скоростями (до 200—250 км/ч ) , осуществляют перевозки пассажиров и грузов. В СССР, США, Канаде, Великобритании, Франции и др. странах Т. с 1968 находятся в опытной эксплуатации и начинают использоваться в регулярном движении. В определённых условиях эксплуатации Т. могут конкурировать с электрической и тепловозной тягой. См. также ст. Моторвагонный подвижной состав.
Турборакетный двигатель
Турбораке'тный дви'гатель(ТуРкД), комбинированный двигатель, в котором рабочее тело для привода турбины турбореактивного двигателя с форсажной камерой вырабатывается жидкостным ракетным двигателем. Перспективно применение ТуРкД на воздушно-космических самолётах и первых ступенях ракет-носителей.
Турбореактивный двигатель
Турбореакти'вный дви'гатель(ТРД), авиационный газотурбинный двигатель, в котором тяга создаётся струей газов, вытекающих из реактивного сопла. ТРД применяются на сверхзвуковых самолётах как маршевые двигатели либо как подъёмные двигатели на самолётах вертикального взлёта и посадки. Атмосферный воздух, поступающий в ТРД при полёте, сжимается в воздухозаборнике и далее в турбокомпрессоре. Сжатый воздух подаётся в камеру сгорания, в которую впрыскивается жидкое химическое топливо (обычно авиационный керосин). Образовавшиеся при сгорании газы частично расширяются в турбине, вращающей компрессор; окончательное расширение газов происходит в реактивном сопле. Тяга ТРД может быть значительно увеличена (примерно на 30—40%) путём дополнительного сжигания топлива в форсажной камере, расположенной между турбиной и реактивным соплом. Для увеличения диапазона устойчивой работы компрессора ТРД и ТРД с форсажной камерой могут выполняться по двухвальной (двухкаскадной) схеме, при которой турбокомпрессор составляется из двух механически не связанных последовательных каскадов. Перспективно использование ТРД на первых ступенях воздушно-космических самолётов. См. также Авиационный двигатель.
В. И. Бакулев.

Принципиальная схема двухвального турбореактивного двигателя с форсажной камерой для сверхзвуковых самолетов: 1 — воздухозаборник; 2 — осевой компрессор; 3 — камера сгорания; 4 — турбина; 5 — форсажная камера; 6 — реактивное сопло.
Турбостроение
Турбострое'ние,см. в ст. Энергетическое машиностроение.
Турбоход
Турбохо'д,судно, приводимое в движение паровой или газовой турбиной. Первый паротурбоход — английский «Турбиния» с тремя паровыми турбинами общей мощностью 1,47 Мвт (2000 л. с.), водоизмещением 44 т, развивавшая скорость около 34 уз (62 км/ч ) — построен в 1894. Практическое применение паровые турбины нашли почти одновременно на военных кораблях (с 1899) и пассажирских судах (с 1901). Паротурбинные установки — самые мощные из судовых главных двигателей (1976) — устанавливаются на крупнейших морских танкерах, навалочниках, лихтеровозах, быстроходных контейнеровозах, пассажирских судах, военных кораблях. К 1976 почти треть (по валовой вместимости) находящихся в эксплуатации морских транспортных судов была оборудована паровыми турбинами с наибольшей единичной мощностью свыше 40 Мвт; проектируются грузовые суда с паротурбинными установками мощностью 88—110 Мвт.
Энергетическая установка паротурбохода состоит из главной паровой турбины с зубчатой передачей на гребной винт, 1—2 паровых котлов; некоторые паротурбоходы имеют 2 винта и более. В качестве топлива обычно используется мазут.
Газотурбоходы появились в военно-морском флоте в 1943—48, использование газовых турбин на транспортных морских судах началось с 1951 (английский танкер «Аурис»). Газовые турбины применяют обычно на судах с повышенной мощностью главных двигателей. В советском транспортном флоте с 1968 эксплуатируются сухогрузное универсальное судно — Т. «Парижская Коммуна» с газовой турбиной мощностью 9,5 Мвт, с 1960 — лесовозы типа «Павлин Виноградов» с турбиной мощностью 2,94 Мвт. В 1977 будет построено судно с горизонтальным способом грузовых операций «Атлантика» с 2 турбинами мощностью по 18,4 Мвт. Лёгкие авиационные и судовые газовые турбины получили распространение на судах на подводных крыльях и судах на воздушной подушке. Энергетическая установка газотурбохода состоит из генератора газа ( камера сгорания или свободнопоршневой генератор газа ) и газовой турбины с зубчатой передачей на гребной вал. Работают турбины на газотурбинном топливе.
Лит. см. при ст. Судно.
Э. Г. Логвинович.
Турбулентное течение
Турбуле'нтное тече'ние(от лат. turbulentus — бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа (см. Турбулентность ) . Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом твёрдых тел, а также так называемых свободные Т. т. — струи, следы за движущимися относительно жидкости или газа твёрдыми телами и зоны перемешивания между потоками разной скорости, не разделёнными какими-либо твёрдыми стенками. Т. т. отличаются от соответствующих ламинарных течений как своей сложной внутренней структурой ( рис. 1 ), так и распределением осреднённой скорости по сечению потока и интегральными характеристиками — зависимостью средней по сечению или максимальной скорости, расхода, а также коэффициента сопротивления от Рейнольдса числаRe. Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболического профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центральной части течения ( рис. 2 ). За исключением тонкого слоя около стенки профиль скорости описывается логарифмическим законом (то есть скорость линейно зависит от логарифма расстояния до стенки). Коэффициент сопротивления l = 8 t w/rv 2 cp (где t w — напряжение трения на стенке, r — плотность жидкости, v cp— её скорость, средняя по сечению потока) связан с Re соотношением
Читать дальшеИнтервал:
Закладка: