БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ)
- Название:Большая Советская Энциклопедия (ЭЛ)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
БСЭ БСЭ - Большая Советская Энциклопедия (ЭЛ) краткое содержание
Большая Советская Энциклопедия (ЭЛ) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Для твёрдых Э. м. большое значение имеют механические свойства: прочность при растяжении и сжатии, при статическом и динамическом изгибе, твёрдость, обрабатываемость, а также тепловые свойства (теплостойкость и нагревостойкость), влагопроницаемость, гигроскопичность, искростойкость и др. Теплостойкость характеризует верхний предел температур, при которых Э. м. способны сохранять свои механические и эксплуатационные свойства. Нагревостойкость Э. м. — способность выдерживать воздействие высоких температур (от 90 до 250 °С) без заметных изменений электрических характеристик материала. В электромашиностроении принято деление Э. м. на 7 классов. Наиболее нагревостойкие Э. м. — неорганические материалы (слюда, фарфор, стекло без связующих или с элементоорганическими связующими). Для хрупких материалов (стекло, фарфор) важна также способность выдерживать перепады температур. Осуществляя электрическое разделение проводников, Э. м. в то же время не должны препятствовать отводу тепла от обмоток, сердечников и других элементов электрических машин и установок. Поэтому важным свойством Э. м. является теплопроводность. Для повышения коэффициента теплопроводности в жидкие Э. м. добавляют минеральные наполнители. Большинство Э. м. в той или иной мере поглощают влагу (гигроскопичны). Для повышения влагонепроницаемости пористые Э. м. пропитывают маслами, синтетическими жидкостями, компаундами. К абсолютно влагостойким можно отнести лишь глазурованный фарфор, стекло и т. п.
Лит.: Электротехнический справочник, 5 изд., т. 1, М., 1974.
А. И. Хоменко.
Электроимпульсная обработка
Электрои'мпульсная обрабо'тка,разновидность электроэрозионных методов обработки, основана на использовании сильноточных электрических импульсов относительно большой длительности, следующих с малой (1—10) скважностью (подробнее см. в ст. Электрофизические и электрохимические методы обработки ) .
Электроимпульсное бурение
Электрои'мпульсное буре'ние,основано на разрушении горной породы мощным электрическим разрядом (пробоем) высокого напряжения (до 200 кв ) , происходящим в приповерхностной зоне забоя скважины, заполненной жидким диэлектриком (масло, дизельное топливо). Разработан в конце 60-х гг. 20 в. в СССР (А. А. Воробьев и др.). Бур выполнен в виде кольцевого зубчатого и центрального электродов. При бурении электроды прижимаются к забою, а центральный электрод вращается, обеспечивая создание последовательных электрических импульсов-пробоев с определенной частотой по всей площади скважины. Горная порода разрушается за счёт напряжений, возникающих в ней при электрическом пробое. Удаление продуктов разрушения производится циркуляцией жидкого диэлектрика. Эффективность бурения не зависит от крепости пород и глубины скважины и определяется параметрами электрического пробоя и условиями удаления продуктов разрушения. Скорость бурения до 6—10 м/ч. Область применения — нисходящие скважины в плотных горных породах, обладающих высоким электрическим сопротивлением и не поглощающих циркулирующий в скважине жидкий диэлектрик. Э. б. находится в стадии эксперимента и промышленной проверки (1977).
Б. Н. Кутузов.
Электроимпульсный станок
Электрои'мпульсный стано'к,электроэрозионный станок, станок для размерной обработки токопроводящих материалов импульсами дугового разряда. Используется в основном для обработки деталей из твёрдых сплавов. Подробнее см. в ст. Электрофизические и электрохимические методы обработки.
Электроиндукционная дефектоскопия
Электроиндукцио'нная дефектоско'пия,электроиндуктивная дефектоскопия, см. в ст. Дефектоскопия.
Электроинерционные опыты
Электроинерцио'нные о'пыты,опыты, доказавшие, что проводимость металлов обусловлена свободными электронами. Эти опыты были выполнены Л. И. Мандельштамом и Н. Д. Папалекси в 1912 (результаты опытов не были опубликованы) и американскими физиками Т. Стюартом и Р. Толменом в 1916. В Э. о. катушка большого диаметра с намотанным на неё металлическим проводом приводилась в быстрое вращение и затем резко тормозилась. При торможении катушки свободные заряды в проводнике продолжали некоторое время двигаться по инерции. Вследствие движения зарядов относительно проводника в катушке возникал кратковременный электрический ток. Этот ток регистрировался гальванометром, присоединённым к концам катушки с помощью скользящих контактов. Направление тока свидетельствовало о том, что этот ток обусловлен упорядоченным движением отрицательно заряженных частиц. Величина переносимого заряда, согласно расчётам, прямо пропорциональна отношению заряда к массе частиц, создающих ток. Измерения показали, что это отношение равно отношению заряда к массе электрона, полученному из других опытов.
Лит.: Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики, т. 2).
Электроинструмент
Электроинструме'нт,ручные переносные машины с приводом от электродвигателя для механической обработки материалов. Э. состоит обычно из корпуса и размещенного в нём электродвигателя, ротор которого соединён с рабочим шпинделем муфтой или редуктором; иногда удлинённый вал ротора Э. является одновременно и рабочим шпинделем. В некоторых случаях (например, электрорубанок) ротор обращенного электродвигателя (статор помещен внутри ротора) служит ножевым валом. Иногда вращательное движение передаётся от электродвигателя к рабочим элементам гибким валом. Э. снабжают рукоятками для переноски и направления инструмента во время работы. Для снижения веса Э. его корпус и некоторые другие детали изготовляются преимущественно из лёгких сплавов. Мощность электродвигателя Э. обычно не превышает 0,4—1,0 квт. Э. предназначен главным образом для производства мелких работ и применяется для механизации ручных операций при выполнении слесарных, монтажных, сборочных и отделочных работ, а также для обработки мест изделий, к которым нельзя подвести инструмент на стационарных станках.
Широко распространён Э. в металлообработке. Для механизации процесса рубки металлов применяются электрические рубильные молотки, у которых вращение вала электродвигателя преобразуется в возвратно-поступательное движение зубила или крейцмейселя, закрепленного на конце ударника. При резке металлов используются различные электрические ножовки, дисковые пилы, при резке листовой стали толщиной до 3 мм — электрические ножницы вибрационного типа, производительность которых достигает 3—6 м/мин. Они особенно удобны при резке по фигурному раскрою. При опиливании применяются передвижные опиловочные электрические машины, а также электрические напильники. Для сверления и развёртывания отверстий служат ручные сверлильные машины (электродрели) различных типов: лёгкие, средние и тяжёлые для обработки отверстий диаметром соответственно до 9, 15 и 30 мм и угловые — для обработки отверстий в труднодоступных местах. Для механизации процесса нарезания резьбы применяются электрорезьбонарезатели и электросверлилки, оснащенные специальными насадками. При шабрении пользуются электромеханическими шаберами и электрическими шабровочными головками.
Читать дальшеИнтервал:
Закладка: