Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям
- Название:Глоссариум по искусственному интеллекту и информационным технологиям
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:9785005589576
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям краткое содержание
Глоссариум по искусственному интеллекту и информационным технологиям - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Искусственный интеллект ИИ (Artificial intelligence (AI)) – это способность машины принимать решения и выполнять задачи, имитирующие человеческий интеллект и поведение.
Искусственный Интеллект на уровне человека (Human Level Machine Intelligence) – это синоним полного ИИ, завершенного ИИ, сильного ИИ. Этот термин обозначает степень развития искусственного интеллекта на уровне человека. Человеческий мозг является моделью для создания такого интеллекта.
Искусственный нейрон (Artificial neuron) – это математическая функция, задуманная как модель биологических нейронов, нейронная сеть. Разница между искусственным нейроном и биологическим нейроном представлена на рисунке. Искусственные нейроны – это элементарные единицы искусственной нейронной сети. Искусственный нейрон получает один или несколько входных сигналов (представляющих возбуждающие постсинаптические потенциалы и тормозные постсинаптические потенциалы на нервных дендритах) и суммирует их для получения выходного сигнала (или активации, представляющего потенциал действия нейрона, который передается по его аксону). Обычно каждый вход взвешивается отдельно, а сумма проходит через нелинейную функцию, известную как функция активации или передаточная функция. Передаточные функции обычно имеют сигмовидную форму, но они также могут принимать форму других нелинейных функций, кусочно-линейных функций или ступенчатых функций. Они также часто являются монотонно возрастающими, непрерывными, дифференцируемыми и ограниченными.

Искусственный сверхинтеллект (Artificial Superintelligence) –это термин, который обозначает степень развития искусственного интеллекта, превосходящую человеческие возможности во всех аспектах. «Искусственный интеллект», который широко используется с 1970-х годов, относится к способности компьютеров имитировать человеческое мышление. Искусственный сверхинтеллект делает шаг вперед и создает мир, в котором когнитивные способности компьютера превосходят человеческие.
Исследования будущего (Futures studies) – это изучение постулирования возможных, вероятных и предпочтительных вариантов будущего, а также мировоззрений и мифов, лежащих в их основе.
Исходная отметка (Бенчмарк) ИИ (AI benchmark) – это эталонный тест ИИ для оценки возможностей, эффективности, производительности и для сравнения ИНС, моделей машинного обучения (МО), архитектур и алгоритмов при решении различных задач ИИ создаются и стандартизируется специальные эталонные тесты, исходные отметки. Например, Benchmarking Graph Neural Networks – бенчмаркинг (эталонное тестирование) графовых нейронных сетей (ГНС, GNN) – обычно включает инсталляцию конкретного бенчмарка, загрузку исходных датасетов, проведение тестирования ИНС, добавление нового датасета и повторение итераций.
«К»
Капсульная нейронная сеть (Capsule neural network) – это архитектура искусственных нейронных сетей, которая предназначена для распознавания изображений. Главными преимуществами данной архитектуры является существенное снижение размеров необходимой для обучения выборки, а также повышение точности распознавания и устойчивость к атакам типа «белый ящик». Ключевым нововведением капсульных нейросетей является наличие так называемых капсул – элементов, являющихся промежуточными единицами между нейронами и слоями, которые представляют собой группы виртуальных нейронов, отслеживающих не только отдельные детали изображения, но и их расположение друг относительно друга. Данная архитектура была задумана Джеффри Хинтоном в 1979 году, сформулирована в 2011 году и опубликована в двух статьях в октябре 2017 года.
Квантование (Quantization) – это разбиение диапазона отсчётных значений сигнала на конечное число уровней и округления этих значений до одного из двух ближайших к ним уровней.
Квантовые технологии (Quantum technologies)― это технологии создания вычислительных систем, основанные на новых принципах (квантовых эффектах), позволяющие радикально изменить способы передачи и обработки больших массивов данных.
Киберфизические системы (Cyber-physical systems) – это интеллектуальные сетевые системы со встроенными датчиками, процессорами и приводами, которые предназначены для взаимодействия с физической окружающей средой и поддержки работы компьютерных информационных систем в режиме реального времени; облачные вычисления – информационно-технологическая модель обеспечения повсеместного и удобного доступа с использованием информационно-телекоммуникационной сети «Интернет» к общему набору конфигурируемых вычислительных ресурсов («облаку»), устройствам хранения данных, приложениям и сервисам, которые могут быть оперативно предоставлены и освобождены от нагрузки с минимальными эксплуатационными затратами или практически без участия провайдера.
Классификация (Classification) – это алгоритмы, которые позволяют машинам назначать категорию точке данных на основе данных обучения.
Кластеризация (Clustering) – это задача по организации данных в группы на основе определенных свойств. После того, как все примеры сгруппированы, человек может дополнительно придать значение каждому кластеру. Существует множество алгоритмов кластеризации. Например, алгоритм k-средних группирует примеры на основе их близости к центроиду. В качестве другого примера можно привести алгоритм кластеризации, основанный на расстоянии примера от центральной точки.
Кластеризация временных данных (Temporal data clustering) – это разделение неразмеченного набора временных данных на группы или кластеры, где все последовательности, сгруппированные в одном кластере, должны быть согласованными или однородными. Хотя для кластеризации различных типов временных данных были разработаны различные алгоритмы, все они пытаются модифицировать существующие алгоритмы кластеризации для обработки временной информации.
Кластерный анализ (Cluster analysis) – это тип обучения без учителя, используемый для исследовательского анализа данных для поиска скрытых закономерностей или группировки в данных; кластеры моделируются с мерой сходства, определяемой такими метриками, как евклидово или вероятностное расстояние.
Кластерный анализ (Cluster analysis) – это тип обучения без учителя, используемый для исследовательского анализа данных для поиска скрытых закономерностей или группировки в данных; кластеры моделируются с мерой сходства, определяемой такими метриками, как евклидово или вероятностное расстояние
Читать дальшеИнтервал:
Закладка: