Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям

Тут можно читать онлайн Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям - бесплатно ознакомительный отрывок. Жанр: Справочники. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Глоссариум по искусственному интеллекту и информационным технологиям
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    9785005589576
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Александр Чесалов - Глоссариум по искусственному интеллекту и информационным технологиям краткое содержание

Глоссариум по искусственному интеллекту и информационным технологиям - описание и краткое содержание, автор Александр Чесалов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга пятая [2021 г. Издание второе]В этой небольшой, но как мне кажется, очень полезной книге я хочу предложить Вам краткий словарь из более чем 1000 терминов и определений по искусственному интеллекту и информационным технологиям (на русском и английском языках). Он поможет Вам сориентироваться во всем многообразии новых терминов и определений в период активных цифровых трансформаций и применения технологий четвертой промышленной революции.

Глоссариум по искусственному интеллекту и информационным технологиям - читать онлайн бесплатно ознакомительный отрывок

Глоссариум по искусственному интеллекту и информационным технологиям - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Александр Чесалов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Корреляционный анализ (Correlation analysis) – метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Таким образом, он определяет существует ли связь между явлениями и насколько сильная связь между этими явлениями.

Креативные вычисления (Computational creativity) – это междисциплинарное направление с характеристиками методов разработки, оценки, моделирования, философии, теоретики, психологии и искусства. Креативные вычисления относятся к мета-технологии для объединения знаний в области вычислений и других дисциплин.

Криогенная заморозка (крионика, криоконсервация человека) – это технология сохранения в состоянии глубокого охлаждения (при помощи жидкого азота) головы или тела человека после его смерти с намерением оживить их в будущем.

Критическая информационная инфраструктура (Critical information infrastructure) – это объекты критической информационной инфраструктуры, а также сети электросвязи, используемые для организации взаимодействия таких объектов.

Критическая информационная инфраструктура Российской Федерации (Critical information infrastructure of the Russian Federation) – это совокупность объектов критической информационной инфраструктуры, а также сетей электросвязи, используемых для организации взаимодействия объектов критической информационной инфраструктуры между собой.

«Л»

Логистическая регрессия (logit model, Logistic regression) – это статистическая модель, используемая для предсказания вероятности возникновения интересующего нас события с помощью логистической функции [ 23 23 .Логистическая регрессия. [Электронный ресурс] // www.statmethods.ru. URL: https://www.statmethods.ru/statistics-metody/logisticheskaya-regressiya/ (дата обращения: 03.02.2022) ].

Логическое программирование (Logic programming) – это парадигма программирования, которая основывается на формальной логике. Любая программа, написанная на логическом языке программирования, представляет собой набор предложений в логической форме, выражающий факты и правила о некоторой проблемной области.

Логическое программирование (Logic programming) – это тип парадигмы программирования, в которой вычисления выполняются на основе хранилища знаний фактов и правил; LISP и Prolog – два языка логического программирования, используемые для программирования AI.

Локальное устройство (Local device) – это устройства, входящие в сеть, которая покрывает относительно небольшую территорию или небольшую группу зданий.

Локальный сервер (Local server) – это хостинг, работающий при помощи программ, которые осуществляют его эмуляцию на личном компьютере.

«М»

Маркер (Token)в языковой модели – это элементарная единица, на которой модель обучается и делает прогнозы.

Марковская модель (Markov model) —это статистическая модель, имитирующая работу процесса, похожего на марковский процесс с неизвестными параметрами, задачей которой является определение неизвестных параметров на основе наблюдаемых данных.

Марковский процесс (Markov process) – это случайный процесс, эволюция которого после любого заданного значения временного параметра t не зависит от эволюции, предшествовавшей t, при фиксированных параметрах процесса [ 24 24 .Марковский процесс [Электронный ресурс] //en.wikipedia.org. URL: https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%80%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81 (дата обращения: 07.07.2022) ].

Масштабируемость (Scalability) – это способность системы, сети или процесса справляться с увеличением рабочей нагрузки (увеличивать свою производительность) при добавлении ресурсов (обычно аппаратных).

Машина опорных векторов (Support Vector Machine) – это популярная модель обучения с учителем, разработанная Владимиром Вапником и используемая как для классификации данных, так и для регрессии. Тем не менее, он обычно используется для задач классификации, построения гиперплоскости, где расстояние между двумя классами точек данных максимально. Эта гиперплоскость известна как граница решения, разделяющая классы точек данных по обе стороны от плоскости.

Машина Тьюринга( Turing machine) – это математическая модель вычислений, определяющая абстрактную машину, которая манипулирует символами на полосе ленты в соответствии с таблицей правил. Несмотря на простоту модели, для любого компьютерного алгоритма можно построить машину Тьюринга, способную имитировать логику этого алгоритма.

Машинное восприятие (Machine perception) – это способность системы получать и интерпретировать данные из внешнего мира аналогично тому, как люди используют наши органы чувств. Обычно это делается с подключенным оборудованием, хотя можно использовать и программное обеспечение.

Машинное зрение (Machine Vision) – это применение общего набора методов, позволяющих компьютерам видеть, для промышленности и производства.

Машинное обучение (Machine Learning) – это область исследования, которая дает компьютерам возможность учиться без явного программирования» [ 25 25 .Машинное обучение [Электронный ресурс] // en.wikipedia.org. URL: https://en.wikipedia.org/wiki/Arthur_Samuel (дата обращения: 14.01.2022) , 26 26 .Машинное обучение. [Электронный ресурс] // datascience.stackexchange.com. URL: https://datascience.stackexchange.com/questions/37078/source-of-arthur-samuels-definition-of-machine-learning (дата обращения: 14.01.2022) ]. Также под машинным обучением понимают технологии автоматического обучения алгоритмов искусственного интеллекта распознаванию и классификации на тестовых выборках объектов для повышения качества распознавания, обработки и анализа данных, прогнозирования [ 27 27 .Машинное обучение. [текст].– Москва: Агентство промышленного развития Москвы, 2019.-155 с. [Электронный ресурс] // apr.moscow. URL: https://apr.moscow/analitics/promyshlennost-moskvy (дата обращения: 02.02.2022). ]. Также машинное обучение определяют, как одно из направлений (подмножеств) искусственного интеллекта, благодаря которому воплощается ключевое свойство интеллектуальных компьютерных систем – самообучение на основе анализа и обработки больших разнородных данных. Чем больше объем информации и ее разнообразие, тем проще искусственному интеллекту найти закономерности и тем точнее будет получаемый результат.

Машинное обучение Microsoft Azure (платформа автоматизации искусственного интеллекта) – это функция, которая предлагает расширенную облачную аналитику, предназначенную для упрощения машинного обучения для бизнеса. Бизнес-пользователи могут моделировать по-своему, используя лучшие в своем классе алгоритмы из пакетов Xbox, Bing, R или Python или добавляя собственный код R или Python. Затем готовую модель можно за считанные минуты развернуть в виде веб-службы, которая может подключаться к любым данным в любом месте. Его также можно опубликовать для сообщества в галерее продуктов или на рынке машинного обучения. В Machine Learning Marketplace доступны интерфейсы прикладного программирования (API) и готовые сервисы. Также, – это способность машин автоматизировать процесс обучения. Входными данными этого процесса обучения являются данные, а выходными данными – модель. Благодаря машинному обучению система может выполнять функцию обучения с данными, которые она принимает, и, таким образом, она становится все лучше в указанной функции.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Чесалов читать все книги автора по порядку

Александр Чесалов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Глоссариум по искусственному интеллекту и информационным технологиям отзывы


Отзывы читателей о книге Глоссариум по искусственному интеллекту и информационным технологиям, автор: Александр Чесалов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x