Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике
- Название:Ответы на экзаменационные билеты по эконометрике
- Автор:
- Жанр:
- Издательство:Литагент «Ай Пи Эр Медиа»db29584e-e655-102b-ad6d-529b169bc60e
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ангелина Яковлева - Ответы на экзаменационные билеты по эконометрике краткое содержание
Настоящее издание представляет собой учебное пособие и подготовлено в соответствии с государственным образовательным стандартом. Пособие составлено в виде ответов на экзаменационные билеты по дисциплине «Эконометрика».
Данное издание написано доступным языком и содержит всю необходимую информацию, достаточную для ответа на экзамене по данной дисциплине и успешной его сдачи.
Настоящие пособие предназначено для студентов высших и средних специальных учебных заведений.
Ответы на экзаменационные билеты по эконометрике - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

3) для определения характера изменения предельной производительности с изменением объёма i -го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi :

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.
Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.
4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:
xi=φ(y,x1…xi-1,xi+1…xn).
6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.
55. Модели бинарного выбора
Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений.
Моделью бинарного выбораназывается модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений
В качестве примеров бинарных результативных переменных можно привести:

Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:

Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз , полученные с помощью данной модели, будут выходить за пределы интервала [ 0;+1 ] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [ 0;+1 ].
Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам:
1) 1) F(–∞)=0;
2) F(+∞)=1;
3) F(x1)>F(x2) при условии , что x1> x2.
Данным трём свойствам удовлетворяет функция распределения вероятности.
Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде:
prob(yi=1)=F(β0+β1xi),
где prob(yi=1) – это вероятность того, что результативная переменная yi примет значение, равное единице.
В этом случае прогнозные значения yiпрогноз , полученные с помощью данной модели, будут лежать в пределах интервала [ 0;+1 ].
Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом:

Векторная форма модели бинарного выбора с латентной переменной:

В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi* :

Модель бинарного выбора называется пробит-моделью или пробит-регрессией(probit regression), если она удовлетворяет двум условиям:
1) остатки модели бинарного выбора εi являются случайными нормально распределёнными величинами;
2) функция распределения вероятностей является нормальной вероятностной функцией.
Пробит-регрессия может быть представлена с помощью выражения:
NP(yi)=NP(β0+β1x1i+…+βkxki),
где NP – это нормальная вероятность (normal probability).
Модель бинарного выбора называется логит-моделью или логит-регрессией(logit regression), если случайные остатки εi подчиняются логистическому закону распределения.
Логит-регрессия может быть представлена с помощью выражения:

Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1].
Обобщённый вид модели логит-регрессии:

Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы).
Читать дальшеИнтервал:
Закладка: