Сергей Доронин - Квантовая магия
- Название:Квантовая магия
- Автор:
- Жанр:
- Издательство:Весь
- Год:2007
- Город:Санкт-Петербург
- ISBN:978-5-9573-0844-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Доронин - Квантовая магия краткое содержание
Квантовая механика перестала быть областью лабораторных исследований — ее законы действуют в мире здесь и сейчас! Принципы, работающие на микроуровне элементарных частиц, распространяются и на макросистемы. Они противоречат здравому смыслу, доставшемуся нам в наследство от классической физики, и кажутся магией. Но это уже реальность.
Квантовая магия - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Таким образом, описание в терминах волновой функции само по себе уже является полуклассическим. Например, в шредингеровскомпредставлении предполагается наличие канонических координат и импульсов. Обычно так и пишут: «Рассмотрим динамическую систему с n степенями свободы, имеющую классический аналог (выделено мной.— С. Д. ) и, следовательно, описываемуюканоническими координатами и импульсами» [62] Дирак П. А. М. Принципы квантовой механики. М., 1960. С. 131.
.
Полноценное квантовое описание и несепарабельные состояния не имеют классического аналога. Волновая функция — это частный случай, лишь одно из возможных представлений вектора состояния, максимально приближенное к классическому описанию системы (частицы) в терминах сепарабельных состояний. Это представление, которое предполагает «отделимость», например, по координатам в шредингеровскомпредставлении.
Естественно, что такое сепарабельноепредставление волновой функции создает сложности в описании и понимании физических состояний, которые могут находиться в нелокальном состоянии. Частица может быть «размазанной» в нашем трехмерном пространстве или расщеплена нанесколько когерентныхпучков (например, в случае с фотонами), и, если мы хотим приписать ей какую-то конкретную координату (траекторию), несложно сообразить, что сделать это невозможно. Например, частица проходит через две щели одновременно, причем, если мы начнем следить, через какую щель она прошла, то нарушим когерентность, частица локализуется (произойдет редукция волновой функции), но после этого интерференция наблюдаться уже не будет.
Поэтому ученым приходилось считать, что волновая функция характеризует лишь вероятности обнаружения частицы в той или иной точке пространства. Предполагалось, что волновая функция (волновой пакет) распределена во всем пространстве (иначе как учесть нелокальность), но описывает она не координаты самой частицы (которой и нет в нелокальном случае), а вероятность ее «проявления» в том или ином месте.
Отсюда так называемый корпускулярно-волновой дуализм, истоки которого в том, что частица может находиться в нелокальном состоянии, а в зависимости от ситуации (от наших приборов) вести себя и как частица, и как волна. Сложность понимания дуализма связана с тем, что частица действительно «распылена» во всем нашем пространстве-времени, точнее, ее просто нет в нашем классическом мире — ни в виде материи, ни в виде поля. Она может «проявиться» в том или ином виде лишь при декогеренции (редукции волновой функции), при взаимодействии с окружением (приборами). Таким образоммы ее буквально «вытаскиваем с того света» (из квантового домена реальности) в наш предметный мир. А до этого она нелокальна и находится в мире «потустороннем», запредельном относительно материального мира, и это ее вполне нормальное физическое состояние наряду с локальным, которое нам более привычно.Многим физикам такое необычное состояние казалось противоестественным, непривычным, поэтому они стремились хотя бы при ее описании вернуть частицу из «потустороннего мира» в привычный мир материальных объектов.
Вероятностное истолкование волновой функции решало еще одну проблему. В случае, когда система при декогеренции скачком переходит в новое состояние, то волновая функция мгновенно перестраивается в соответствии с этим переходом. Такая редукция приводила бы к противоречиям с требованиями теории относительности, если бы волновые функции представляли собой обычные материальные волны, например электромагнитные. Действительно, в этом случае редукция волновой функции означала бы существование сверхсветовых (мгновенных) сигналов. Вероятностное истолкование снимало это затруднение.
Подчеркну еще раз, что волновая функция дает сведения о вероятности нахождения одной частицы в данном месте, а не о вероятностном числе частиц в этом месте. Только такая точка зрения позволяет адекватно описать физические эксперименты, например, по интерференции, причем каждая частица (например, фотон) интерферирует лишь сама с собой. Интерференции между двумя разными фотонами никогда не происходит [63] См., например: Дирак П. А. М. Принципы квантовой механики. М., 1960. С. 25. В последние годы физики-экспериментаторы научились получать когерентные частицы, способные к интерференции, от различных источников. Результаты совсем недавних экспериментов опубликованы в Nature: Beugnon J. et al. Nature, 440 , 779 (6 April 2006), см. комментарий: http://www. qd . ru / pletner /news.asp?id_ msg =61122.
.
2.7. Представления вектора состояния
Как уже было сказано, в аксиоматике квантовой механики нет таких понятий, как координата и время. Они могут появиться в одном из представлений, когда мы переходим к нему (например, шредингеровскому) от теоретических абстрактных понятий квантовой механики: вектора состояния, линейных операторов и т. д. Но одно из представлений — это далеко не вся квантовая теория. На мой взгляд, об этом неплохо пишет Дирак в «Принципах квантовой механики» в главе III, которая так и называется «Представления».
Он говорит примерно следующее: после того, как введены основные понятия квантовой механики — вектор состояния, линейный оператор и т. д., встает вопрос о выборе наиболее удобного способа «манипулирования» этими теоретическими, абстрактными объектами. Обычно с этими абстрактными величинами бывает удобно сопоставить числа или совокупность чисел и далее работать уже с этой совокупностью чисел.
Такой переход аналогичен введению в геометрии координат, которые позволяют использовать для решения геометрических задач мощные математические методы.
Естественно, что способ, согласно которому абстрактные величины заменяются числами, не является единственным, подобно тому, как в геометрии можно выбрать много различных координатных систем. В квантовой теории каждый такой способ называется представлением , а совокупность чисел, заменяющих абстрактную величину, — представителем этой абстрактной величины в данном представлении. Таким образом, представитель, например, вектора состояния аналогичен координатам геометрического объекта. Если нужно решить какую-то конкретную квантовую задачу, то можно облегчить работу, выбрав представление так, чтобы представители существенных для данной задачи абстрактных величин имели наиболее простой вид.
Далее Дирак говорит о волновой функции как об одном из представлений вектора состояния, как функции отдельных наблюдаемых. В IV главе (п. 22) он рассуждает о шредингеровскомпредставлении, в котором сделано предположение , что все координаты являются наблюдаемыми и имеют сплошной спектр собственных значений. В этом представлении все координаты диагональны(предполагается их сепарабельность) и составляют полный набор коммутирующих наблюдаемых для данной динамической системы.
Читать дальшеИнтервал:
Закладка: