Сэмюел Стернберг - Трещина в мироздании [litres]
- Название:Трещина в мироздании [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-109309-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэмюел Стернберг - Трещина в мироздании [litres] краткое содержание
Трещина в мироздании [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Генные нокауты – лишь один из множества подходов к редактированию генома, которые ученые довели до совершенства с помощью CRISPR. Нередко генным инженерам требуется нечто более точное, чем неспецифическое внедрение мутаций в ген за счет случайных вставок или делеций нуклеотидов ДНК. В конце концов, главная цель редактирования генома, по крайней мере применительно к медицине, – это избавление от генетических заболеваний, абсолютное большинство которых вызывается мутациями, “выключающими” важные гены. В таких случаях генные нокауты не принесут пользы, так как у них уже есть неработающие гены – и именно они служат причиной проблем со здоровьем. Что необходимо ученым, так это способ выявлять отдельные ошибочно расположенные “буквы” ДНК, редактировать их и таким образом приводить состав генов в норму.
К счастью, клетки имеют молекулярные машины для осуществления второго типа репарации клеток, гораздо более точного и лучше поддающегося контролю, чем простое склеивание фрагментов разорванной ДНК. Вместо соединения отрезков ДНК, последовательности нуклеотидов в которых никак не связаны друг с другом, этот второй вариант репарации – цепь биохимических реакций, которую пионеры редактирования генома использовали в своих целях, – соединяет только отрезки ДНК, последовательности нуклеотидов которых частично совпадают. По причине такой избирательности процесс называют двумя синонимичными терминами: гомологичная рекомбинация и репарация, направляемая гомологией .
Гомологичная рекомбинация сходна с процессом сборки панорамного снимка из трех частично перекрывающихся фотографий. Чтобы в итоговом изображении они составляли единое целое, фотографу нужно правильно наложить бока центральной фотографии на правую сторону фото слева и левую сторону фото справа. Если середина панорамы вырезана или повреждена, фотографу достаточно взять дубликат центрального снимка и по описанному принципу восстановить панораму. А если изображаемый пейзаж в реальности изменился – например, там построили новый дом или срубили большое дерево, – фотограф в состоянии справиться и с этой ситуацией. Для этого ему нужно вставить новое центральное изображение взамен старого, используя тот же самый подход.
Получается, что ферменты внутри клетки выполняют аналогичные операции вырезания и вставки, но вместо панорамы у них ДНК. Способ репарации, о котором мы уже говорили, – соединение концов, иногда приводящее к ошибкам в последовательности нуклеотидов, – применяется, когда клетка сталкивается с такой серьезной и неотложной проблемой, как разорванная хромосома, и “на авось” заново соединяет разрезанные концы – подобно тому как фотограф склеивает панораму, в которой не хватает кусочка пейзажа. Однако когда у клетки есть и разорванная хромосома, и второй фрагмент ДНК, совпадающий с двумя разъединенными концами, – шаблон для починки, по функциям напоминающий дубликат центрального снимка из примера выше, – она выбирает лучший вариант: вставить фрагмент ДНК в разорванную хромосому, но таким образом, чтобы он без шва наложился на соответствующие концы. При реализации такой стратегии вредоносную генетическую мутацию в точке, куда нацелен CRISPR (или в непосредственной близости от нее), можно навсегда устранить, заменив новой, “здоровой” последовательностью ДНК. Пока исследователи снабжают клетку CRISPR шаблоном для репарации, последовательность которого совпадает с таковой для поврежденного гена, клетка будет добросовестно использовать выданные ей запчасти для устранения повреждений.

Гомологичная рекомбинация с CRISPR
Помимо тонкой настройки генов путем “небрежной” (негомологичной) или точной (гомологичной) репарации, ученые приспособили CRISPR для вырезания или переворачивания больших фрагментов ДНК, что позволяет изменять гораздо более крупные участки генома. В рамках этого метода используется готовность клеток “пойти на все”, лишь бы восстановить целостность хромосомы. Вооружив Cas9 двумя разными направляющими РНК, исследователи могут запрограммировать CRISPR на разрезание хромосомы в двух соседних генах; клетка справляется с этим повреждением, собирая хромосому заново по одному из трех сценариев.

Создание инверсий или делеций в генах с помощью CRISPR
В этой ситуации клетке нужно соединить в два раза больше концов разорванных молекул, чем в случаях, которые мы рассматривали раньше. Первый способ это сделать – на максимальной скорости, одновременно, “склеить” молекулу сразу в двух местах. Впрочем, часто отрезок времени, в течение которого репарацию можно провести таким путем, очень незначителен, поскольку молекулы в клетке непрерывно хаотично перемещаются. Если участок ДНК между двумя точками, в которых молекула была разрезана, “уплывет” куда-нибудь в сторону, клетка будет действовать согласно плану Б – и соединит концы порванной ДНК без разделяющего их фрагмента, который перестал быть доступным. Этот способ репарации можно сравнить с методом, с помощью которого режиссеры монтажа раньше удаляли ненужные сцены из фильма. Они просто разрезали пленку в двух местах – перед началом и по завершении ненужной сцены, – затем запись этой сцены выкидывали, а оставшиеся два конца пленки склеивали один с другим.
Третий способ репарации предполагает инверсию вырезанного фрагмента ДНК. В данном случае вырезанная часть ДНК перемещается таким образом, что остается примерно на том же месте, но переворачивается на 180 градусов, так что ее передний конец теперь находится там, где располагался задний, и наоборот. Те же ферменты, что способствуют соединению концов, “вклеят” недостающий кусочек в ДНК невзирая на его ориентацию.
Существует и другая область применений CRISPR, не имеющая ничего общего с редактированием генов. Вместо того чтобы пользоваться возможностью CRISPR разрезать ДНК, ученые буквально ломают механизм – нарочно. Специально “выключая” молекулярные ножницы, они могут управлять геномом дистанционно – не внося перманентные правки в ДНК, а изменяя то, как эта ДНК считывается, транслируется и экспрессируется. Прямо как невидимые ниточки дают “кукловоду” практически полный контроль над движениями и действиями “марионеток”, эта нережущая версия CRISPR позволяет ученым управлять поведением клетки, тем, что она производит.
Основы этого “марионеточного управления” фактически были заложены в ходе ранних экспериментов с CRISPR -Cas 9, проводившихся у меня в лаборатории. Белки обычно состоят из сотен или тысяч “кирпичиков” – аминокислот, большинство которых служит для придания молекуле определенной формы, а способность фермента катализировать определенные химические реакции определяется функциональными группами всего нескольких из множества входящих в его состав аминокислот. Когда Мартин Йинек впервые определял биохимические функции Cas9, он показал, какие конкретно аминокислоты расщепляют химические связи между звеньями каждой из цепей двойной спирали ДНК. Провоцируя такие мутации в гене сas 9, чтобы эти аминокислоты заменились на другие, он создал версию соответствующего белка, абсолютно утратившую способность разрезать ДНК, но, что примечательно, по-прежнему способную взаимодействовать с направляющей РНК и прочно соединяться с комплементарными последовательностями ДНК. Мы разрушили структуру каталитического центра фермента, но инактивированный Cas9 все же сохранил некоторые из своих функций: он мог находить и фиксировать конкретные последовательности ДНК в геноме, только не был способен их разрезать. Похожую работу опубликовал Виргиниюс Шикшнис с коллегами [88] Gasiunas et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage.”
.
Интервал:
Закладка: