Сэмюел Стернберг - Трещина в мироздании [litres]
- Название:Трещина в мироздании [litres]
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2019
- Город:Москва
- ISBN:978-5-17-109309-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сэмюел Стернберг - Трещина в мироздании [litres] краткое содержание
Трещина в мироздании [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Возможно, самое прекрасное в работе Йениша – по крайней мере, с точки зрения генетиков, работающих не с мышами, а другими животными, – так это то, что в ходе нее был открыт почти не требующий усилий способ редактирования генома едва ли не любого организма. И если изначальный метод с применением эмбриональных стволовых клеток применяли только на мышах, то теперь создавалось впечатление, что CRISPR можно ввести в любые половые клетки (яйцеклетки и сперматозоиды) или эмбрионы – и генетические изменения на выходе точно скопируются во все клетки и всегда будут передаваться будущим поколениям. В тот момент я не могла вообразить, что расширение области применения CRISPR на человеческие эмбрионы породит одну из самых сложных этических дискуссий вокруг CRISPR – и в эту дискуссию очень скоро затянет и меня.

Создание мышей с геномом, отредактированным с помощью CRISPR
Летом 2013-го, восхищаясь, с какой скоростью распространяется метод CRISPR, я начала составлять список всех типов клеток и всех видов живых организмов, чьи геномы уже были отредактированы с использованием этой технологии. Сначала это было легко: в январе-феврале список включал в себя данио-рерио и культуры клеток бактерий, мышей и человека, потом к нему добавились дрожжи, живые мыши, плодовые мушки и микроскопические черви. К концу того же года в перечень вошли крысы, лягушки и гусеницы шелкопряда. За следующий год я добавила в список кроликов, свиней, коз, асцидий и обезьян – и после этого, как я честно признавалась слушателям на семинарах, где рассказывала о своем списке, потеряла счет. Наблюдение за тем, как молекулы белков и РНК, в природе служащие для защиты бактерий от вирусов, все шире используются для разрезания и точного редактирования последовательностей ДНК самых разнообразных животных, захватывало дух.
Однако метод находил применение не только на животных. Ботаники, пусть они сначала и двигались медленнее, тоже открывали для себя невероятный потенциал CRISPR в редактировании ДНК сельскохозяйственных и диких растений. Вал публикаций осенью 2013-го сообщал об успешном применении CRISPR для редактирования генома в главных пищевых культурах, таких как рис, сорго и пшеница, а год спустя список “отредактированных” растений расширился за счет сои, помидоров, апельсинов и кукурузы.
Перечень “откриспрованных” растений и животных продолжал расти. К 2016-му исследователи успели отредактировать ДНК едва ли не во всех организмах – от капусты, огурцов, картофеля и грибов до собак, хорьков, жуков и бабочек. Даже вирусам, этим биологическим объектам на границе живого и неживого – они неспособны самостоятельно размножаться, но тем не менее обладают наследственным материалом, – переписали геномы с помощью CRISPR, то есть той самой бактериальной системы, которая изначально сформировалась для их уничтожения.
Стоит отметить, что хотя взрослые Homo sapiens – это вид животных, к которым CRISPR будет применен в самую последнюю очередь, клетки человека подвергались экспериментам по редактированию генома чаще, чем клетки какого-либо другого организма. Ученые вводили CRISPR в клетки легкого, чтобы исправить генную мутацию, вызывающую кистозный фиброз, в клетки крови, чтобы устранить мутации, приводящие к серповидноклеточной анемии и бета-талассемии, и в мышечные волокна, чтобы избавиться от мутаций, служащих причиной миодистрофии Дюшенна. Исследователи использовали CRISPR для редактирования и исправления мутаций в стволовых клетках, которые впоследствии можно трансформировать практически в любые типы клеток, составляющие самые разнообразные ткани тела. А еще ученые отредактировали с помощью CRISPR тысячи генов в раковых клетках человека в попытке найти новые мишени для противораковых лекарств и новые методы лечения онкологических заболеваний.
Но если и было что-то более вдохновляющее, чем наблюдение за тем, как CRISPR используют едва ли во всех вообразимых организмах, так это свидетельства того, как расширяются сами границы редактирования генома. В 1980-х ученые довольствовались редактированием отдельных генов с эффективностью всего в несколько долей процента. К началу 2000-х доля успешных попыток выросла до нескольких (обычно не больше трех) процентов, плюс теперь стало возможно изменять гены еще парой новых способов. Но с появлением CRISPR редактирование генома стало давать столько разнообразных возможностей, что его начали называть геномной инженерией – этот термин отражает беспрецедентные возможности манипуляций с генетическим материалом, находящимся внутри живых клеток.
Применяя CRISPR к самым различным организмам, ученые разработали и доработали множество подходов к редактированию ДНК. В дополнение к простому разрезанию ДНК и вставке новых последовательностей в геном-мишень исследователи теперь могут выводить из строя гены, переставлять последовательности в генетическом коде и даже исправлять ошибки всего в одной “букве”, как и продемонстрировал Киран Мусунуру, когда я была у него в лаборатории. Эти достижения, в свою очередь, дали исследователям возможность проводить новые типы экспериментов на представителях царств растений и животных, включая наш собственный вид. Так что перед тем как продолжить рассказ о спектре применений редактирования генома, важно понять множество потенциальных применений этого невероятно многофункционального инструмента.
Весной 2014-го учитель шестого класса, в котором учился мой сын Эндрю, пригласил меня к ним на урок объяснить ученикам, что такое CRISPR. Я почла за честь это приглашение, но при этом волновалась: как же мне понятно рассказать о редактировании генома детям, у которых есть только самые базовые знания о ДНК?
Я решила принести с собой напечатанную на 3D-принтере модель белка Cas9 и его направляющей РНК, связанной с ДНК. Эта модель стала главным украшением моего кабинета: ее ярко-оранжевая РНК и бриллиантово-голубая ДНК сплелись с белоснежным белком в структуру размером с футбольный мяч; вместе их удерживали магниты. Я рассудила, что детали молекулярных механизмов в основе CRISPR будут сложны и неинтересны для школьников, и решила просто отдать им “футбольный мяч”, чтобы они, передавая его друг другу, смогли рассмотреть структуру вблизи.
Я недооценила любознательность школьников. Практически сразу же после того, как я отдала им модель, они нашли способ разорвать ДНК в месте, где ее разрезает Cas9, и поняли, как помещать ДНК внутрь системы CRISPR и извлекать ее оттуда. А я так волновалась, что не смогу объяснить им все эти сложные принципы!
Читать дальшеИнтервал:
Закладка: