Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Название:Жизнь на скорости света. От двойной спирали к рождению цифровой биологии
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2018
- Город:Москва
- ISBN:978-5-17-094327-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Крейг Вентер - Жизнь на скорости света. От двойной спирали к рождению цифровой биологии краткое содержание
Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Хотя данные этих непрямых методов весьма обнадеживали, решающей пробой должно было стать секвенирование ДНК из голубой колонии, позволяющее установить истинную природу генома. Мы выбрали две из наших голубых колоний и секвенировали 1300 библиотечных клонов из каждой, всего больше миллиона пар оснований. Мы по-настоящему взволновались, когда все последовательности совпали только с геномом M. mycoides , который и был пересажен в клетки-реципиенты.
На каждом этапе нашего анализа становилось все ясней и ясней, что наши клетки содержат только трансплантированный геном M. mycoides и что геном M. cap-ricolum был уничтожен или попал при делении в дочерние клетки, которые впоследствии были убиты антибиотиком в питательной среде. Но мы все еще не были удовлетворены. Не может ли этот результат все-таки оказаться артефактом? Не могло ли так случиться, что мы перенесли хотя бы одну невредимую клетку M. mycoides , которая размножилась и создала у нас иллюзию, что пересадили геном? Может быть, голубые колонии – не более чем результат контаминации? Нэйт Каплан был первым, кто научил меня старой мудрой мантре, что чрезвычайные утверждения требуют чрезвычайных же доказательств {151} 151 Идея, как полагают, восходит по крайней мере к Лапласу, который сказал: «Вес доказательств для чрезвычайного заявления должны быть соразмерен его странности».
.
Следуя этому критическому подходу, мы ввели контроль для каждого эксперимента в цепочке, приведшей нас к этому результату, что позволяло исключить всякие артефакты. Хотя мы были уверены, что наша процедура по выделению ДНК убивала все до единой клетки M. mycoides , для гарантии в каждый эксперимент по пересадке мы включили два контрольных варианта: в одном трансплантации делались без реципиентных клеток M. capricolum , в другом у нас были клетки M. capricolum , но гелевые пробки не содержали ДНК M. mycoides . В этих вариантах никаких голубых колоний не наблюдалось, что давало уверенность, что наши препараты ДНК не были загрязнены клетками M. mycoides . Дополнительно нас обнадежило наблюдение, что число голубых колоний в каждом эксперименте прямо зависит от количества ДНК M. mycoides , добавленной к клеткам. Чем больше ДНК мы добавляли, тем больше возникало модифицированных колоний.
Так что же у нас в итоге получилось? Были ли это клетки M. capricolum, содержавшие только ДНК M. my-coides , включая добавленные lacZ и гены устойчивости к антибиотикам? Что изменилось вследствие трансплантации генома? Что за фенотип был у потомков клеток с трансплантированной ДНК? Мы подвергли голубые клетки комплексу аналитических процедур, чтобы выяснить, какие у них белки. Используя антитела, чрезвычайно чувствительные к белкам обоих «родительских» видов, мы выяснили, что находится на поверхности голубых клеток. К нашему приятному удивлению, антитела к белкам M. capricolum не связались с новыми клетками с трансплантированными геномами, а вот антитела к белкам M. mycoides связались.
Параллельно пробам с антителами мы провели гораздо более полный анализ, в котором белки всех трех типов клеток (реципиентные клетки M. capricolum , донорские M. mycoides и потомки клеток с пересаженным геномом) изучались по методу дифференциального двумерного (2D) электрофореза. Можно сказать, что это такой способ увидеть белковое содержимое клеток. Белки, выделенные из клеток, разделяются в одном направлении по своему размеру, а в другом – по электрическому заряду. Клеточные белки расползаются в стороны, и получается характерное распределение пятен, уникальное для каждого типа клеток. Такие паттерны 2D затем можно легко сравнивать друг с другом. Этот метод показал, что распределение белков из голубых клеток почти идентично таковому из донорских клеток M. mycoides и очень отличается от белкового паттерна M. capricolum .
Мы были потрясены этим результатом, но хотели большего. Мы секвенировали фрагменты белков из 90 разных пятен на 2D-геле, используя технологию, называемую масс-спектрометрией на основе матрично-поддерживаемой лазерно-десорбционной ионизации ( MALDI ). В этом процессе, который еще лет десять назад казался бы какой-то научной фантастикой, пятнышки сепарированных белков вытягивают лазером из геля, образуя восходящий поток заряженных молекул над каждым пятном, а потом подвергают стандартному методу масс-спектрометрии. Таким образом процедура MALDI может выявлять аминокислотную последовательность белкового фрагмента в гелевых пятнах.
Эти данные снабдили нас неопровержимым доказательством того, что в клетке были только такие белки, которые могут быть считаны с трансплантированного генома M. mycoides . Теперь мы абсолютно уверились, что у нас есть новый и оригинальный механизм изменения генетической идентичности клетки, помимо рекомбинации ДНК или естественных механизмов трансформации. Поскольку геном M. capricolum не кодирует процессов захвата ДНК, мы были вправе заключить, что пересадка новой хромосомы в клетки M. capricolum может быть только результатом нашей процедуры трансплантации генома через полиэтиленгликоль. Теперь мы знали, что у нас есть клетки, возникшие в результате намеренной трансплантации генома одного вида в клетку другого. Сделав это, мы в сущности превратили один вид в другой.
Наш успех имел много последствий. Самым важным было то, что теперь мы знали: если бы нам удалось синтезировать геном из четырех бутылей с химикатами, то уже можно было бы взять этот геном и перенести его в клетку-реципиент, где он запустит свои программы. Таким образом работа по трансплантации придала новый импульс нашим попыткам синтезировать ДНК какого-нибудь организма и затем на ее основе создать новую живую клетку.
Другим важным следствием первых пересадок генома стало то, что они дали новое, более глубокое понимание жизни. В ходе наших исследований выкристаллизовалось мое представление о жизни. ДНК – это программное обеспечение жизни, но если мы ее заменяем, тем самым мы меняем видовую принадлежность, а значит, и аппаратную часть клетки. Это был именно тот результат, обнаружения которого хорошей редукционистской наукой так боялись те, кто хотел бы доказать существование некой виталистической силы. Боялись потому, что он неизбежно означал бы попытку разобрать жизнь и само понятие живого на составные части, на простые элементы и базовые функции. Наши опыты почти не оставили места для взглядов виталистов или тех, кто хотел бы верить, что жизнь зависит от чего-то еще, кроме сложного сочетания химических реакций.
Эти эксперименты не оставили сомнений в том, что жизнь – это информационная система. Я видел впереди следующую цель. Я хотел внести в жизнь новую информацию: написать на своем компьютере программу, химическим синтезом воплотить ее в хромосому из ДНК, а затем пересадить эту рукотворную информацию в клетку. Я хотел привести нас в новую эру биологии, породив новую живую форму, которая бы описывалась и управлялась только информацией в ДНК, созданной в лаборатории. Это было бы окончательное доказательство синтезом.
Читать дальшеИнтервал:
Закладка: