Чарльз Эллис - Эпигенетика
- Название:Эпигенетика
- Автор:
- Жанр:
- Издательство:Техносфера
- Год:2010
- Город:Москва
- ISBN:978-5-94836-257-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Эллис - Эпигенетика краткое содержание
Книга ярко и наглядно повествует о новой науке общебиологического значения — эпигенетике, а также об ее отдельных областях. В издании представлено описание разных эпигенетических сигналов и механизмов их реализации, а также собственно феномен, история и концепции эпигенетики, ее отдельные механизмы и пути реализации эпигенетических сигналов в клетке. Авторы различных глав данной книги — ведущие в мире специалисты в области эпигенетики, являющиеся, как правило, и основоположниками ее отдельных областей.
Издание будет полезно широкому кругу читателей, интересующихся коренными проблемами живого мира, сущности жизни и молекулярных механизмов ее проявления.
По формирующейся традиции современной российской научной литературы, оригинальное русскоязычное печатное издание неопрятно переведено, отвратительно вычитано и содержит большое количество ошибок, начиная с обложки. Чарльз Дэвид Эллис указан как С. Д. Эллис.
Эпигенетика - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В годы, последовавшие за этими открытиями, огромное внимание было уделено эндогенным паттернам метилирования ДНК, возможной передаче этих паттернов через зародышевый путь, роли метилирования ДНК в сайленсинге генной экспрессии, возможным механизмам инициации или ингибирования метилирования в полностью неметилированном сайте и идентификации энзимов, ответственных за метилирование de novo и за поддержание метилирования на уже метилированных сайтах. Хотя значительный объем метилирования ДНК, наблюдаемый у позвоночных, связан с повторяющимися и ретровирусными последовательностями и может служить для поддержания этих последовательностей в перманентно «молчащем» состоянии, не может быть никаких сомнений в том, что во многих случаях эта модификация обеспечивает основу для эпигенетической передачи состояния генной активности. Наиболее четко это продемонстрировано на таких импринтированных локусах (Cattanach and Kirk, 1985), как локус Igf2/H19 мыши или человека, где одна аллель маркирована метилированием ДНК, которое в свою очередь контролирует экспрессию с обоих генов (Bell and Felsenfeld, 2000; Hark et al., 2000). В то же самое время было ясно, что это не может быть единственным механизмом для эпигенетической передачи информации. Например, как отмечено выше, эффект положения мозаичного типа наблюдали за много лет до этого у Drosophila — организма, который обладает крайне низким уровнем метилирования ДНК. Более того, в последующие годы генетики, работавшие с Drosophila , идентифицировали группы генов Polycomb и Trithorax , которые, по-видимому, участвуют в постоянном «запирании» («locking in») состояния активности кластеров генов в ходе развития (либо «выключеного», либо «включенного», соответственно). Тот факт, что эти состояния стабильно передавались в ходе клеточного деления, позволял предполагать, что в основе этого лежит эпигенетический механизм.
5. Роль хроматина
Многие годы признавалось, что белки, связанные с ДНК в эукариотном ядре, особенно гистоны, могут участвовать в модификации свойств ДНК Задолго до начала работ по метилированию ДНК Стедман и Стедман (Stedman and Stedman, 1950) предположили, что гистоны могут действовать как общие репрессоры экспрессии генов. Они писали, что поскольку все соматические клетки организма имеют одно и то же число хромосом, они имеют одинаковый генетический набор (хотя, как отмечается выше, это оставалось не доказанным еще несколько лет). Понимание тонкой природы модификаций гистонов было в далекой перспективе, так что Стедманы оперировали предположением, что разные типы клеток в организме, чтобы генерировать наблюдаемые различия в фенотипе, должны обладать различными типами гистонов. Гистоны действительно могут снижать содержание транскриптов до уровней гораздо ниже тех, что наблюдаются для неактивных генов у прокариот. Последующая работа была направлена на способность хроматина служить матрицей для транскрипции и на решение вопроса о том, ограничена ли эта способность специфичным для клеточного типа образом. В работе 1963 года Боннер (Bonner et al, 1963) приготовил хроматин из продуцирующей глобулин ткани растения гороха и показал, что, когда добавляли PH К-полимеразу из Е. coli и получающийся в результате транскрипт транслировали в системе in vitro, можно было выявить глобулин Такой результат был специфичен для данной ткани. С пришествием методов гибридизации в таких экспериментах in vitro можно было исследовать популяции транскриптов (Paul and Gilmour, 1968); они оказались специфичными для той конкретной ткани, из которой был получен хроматин. Другие результаты позволяли предполагать, что эта специфичность отражает ограничения в доступе к сайтам инициации транскрипции (Cedar and Felsenfeld, 1973). Тем не менее, был период, когда все полагали, что гистоны являются супрессорными белками, которые пассивно подавляют экспрессию генов. С этой точки зрения, активация гена означает просто «сдирание» с него гистонов; считалось, что коль скоро это сделано, транскрипция будет осуществляться почти как у прокариот. Имелись, однако, некоторые данные о том, что в эукариотических клетках нет более или менее протяженных районов открытой ДНК (Clark and Fesenfeld, 1971). Более того, даже если модель «голой» ДНК является правильной, было неясно, каким образом принимается решение о том, какие из покрытых гистонами участков должны быть очищены.
Решение этой проблемы началось еще в 1964 году, когда Олфри (Allfrey et al., 1964) высказал спекулятивное соображение, что с активацией генов могло бы коррелировать ацетилирование гистонов и что «активный» хроматин не обязательно должен быть лишен гистонов. В последующее за этим десятилетие наблюдался огромный интерес к изучению взаимоотношений между модификациями гистонов и экспрессией генов. Были идентифицированы иные, чем ацетилирование, модификации (метилирование и фосфорилирование), но их функциональное значение оставалось неясным. Исследовать эту проблему стало гораздо легче после открытия Корнбергом и Томасом (Kornberg and Thomas, 1974) структуры нуклеосомы, фундаментальной субъединицы хроматина. Определение кристаллической структуры нуклеосомы, сначала с разрешением 7 Е, а потом с разрешением 2.8 Е также дало важную структурную информацию, в частности данные о вытягивании аминотерминальных «хвостов» гистонов за пределы кора «ДНК — белковый октамер», что делало очевидной их доступность для модификаций (Richmond et al., 1984; Luger et al., 1997). Начав в 1980 году и продолжив свои исследования на протяжении еще нескольких лет, Грунштейн (Grunstein) и его сотрудники (Wallis et al., 1980; Durrin et al., 1991), применив генетический анализ на дрожжах, смогли показать, что аминотерминальные «хвосты» гистонов имеют важное значение для регуляции экспрессии генов и для формирования «молчащих» доменов хроматина.
Окончательная привязка к детальным механизмам началась с того, что Эллис (Allis) (Brownell et al., 1996) показал, что ацетилтрансфераза гистонов из Tetrahymena гомологична регулятору транскрипции у дрожжей, белку Gcn5; это явилось прямым доказательством того, что ацетилирование гистонов связано с контролем экспрессии генов. С тех пор, конечно, произошел буквально взрыв открытий модификаций гистонов, а также переоценка роли тех из них, которые уже были известны прежде.
Все это еще не было ответом на вопрос о том, каким образом сайты для модификации выбираются in vivo. Было показано, например (Pazin et al., 1994), что Gal4-VP16 может активировать транскрипцию с реконструированной хроматиновой матрицы зависимым от АТФ образом. Активация сопровождалась репозиционированием нуклеосом, и было высказано предположение, что это является критическим событием в обеспечении доступности промотора. Для более полного понимания значения этих открытий потребовалась идентификация АТФ-зависимых комплексов ремоделинга нуклеосом, таких как SW1/SNF и NURF (Peterson and Herskowitz, 1992; Tsuiyama and Wu, 1995), и понимание того, что в подготовке хроматиновой матрицы к транскрипции участвуют и модификации гистонов, и ремоделинг нуклеосом.
Читать дальшеИнтервал:
Закладка: