Джеймс Уотсон - ДНК. История генетической революции
- Название:ДНК. История генетической революции
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2018
- Город:Санкт-Петербург
- ISBN:978-5-4461-0549-6
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джеймс Уотсон - ДНК. История генетической революции краткое содержание
ДНК. История генетической революции - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Буря, разразившаяся по поводу «биопиратства» Sequana , не шла ни в какое сравнение с ураганом, налетевшим на Кари Стефанссона ( Kári Stefánsson ) и его компанию deCODE Genetics несколько лет спустя. Кари Стефанссон решил, что для исследования тоже нужно найти отдаленный остров, но более густонаселенный, чем Тристан-да-Кунья, у обитателей которого можно было бы сразу определить несколько патологических генов. Так сложилось, что Кари Стефанссон родился именно на таком острове.
Родина Кари Стефанссона – Исландия, по площади примерно как штат Кентукки, но население всей страны составляет примерно 323 тысячи человек, что в 13 раз меньше, чем в этом штате. В IX–X веках остров заселили викинги, которые привезли с собой женщин, похищенных в Ирландии во время набегов. Поэтому Исландия была интересна для предприимчивого охотника за генами сразу по нескольким причинам. Во-первых, население Исландии исключительно однородно: практически все жители происходят от тех самых первых поселенцев, со времен викингов в страну мало кто иммигрировал. Во-вторых, имеются метрики всех родившихся в стране жителей с 1838 года, кроме этого реестра, есть и подробные генеалогические архивы, уходящие в прошлое на много поколений. Стефанссон утверждал, что может проследить собственную родословную на тысячу лет в прошлое, вплоть до легендарного исландского поэта и воина Эгилля Скаллагримссона, одного из героев исландских саг. В-третьих, в Исландии с 1914 года действует государственная служба здравоохранения, поэтому медицинские карты всей нации есть в наличии, они хранятся в строгом порядке, и их можно изучать.
Кари Стефанссон, невролог с гарвардским дипломом, интересовался сложными генетическими расстройствами, в частности рассеянным склерозом и болезнью Альцгеймера. Понимая, что его соотечественники – идеальная популяция для подобных исследований, он стал сооснователем компании deCODE и взялся за соотношение реестров медицинских (уже имеющихся) с реестрами генетическими. Стефанссон решил собрать максимально полную базу данных для поиска генов. На это у него имелось официальное разрешение от исландского парламента.
В 2000 году deCODE получила двенадцатилетнюю лицензию на создание и эксплуатацию Исландской медицинской базы данных. Генеалогические сведения были общедоступны, но в базу данных попадала информация из медицинских карт лишь тех островитян, которые на это согласились. В дальнейшем такие заверения жителей не спасли deCODE от широкого общественного осуждения относительно приватности генетических данных.
Большинство исландцев одобрили миссию компании, а также потенциальный положительный эффект для небольшой экономики своей страны. После завершения проекта «Геном человека» компания deCODE стала одной из самых успешных и плодовитых в плане открытий генетических организаций, открывшей аллели, ответственные за развитие десятков сложных, генетически ассоциированных нарушений: сердечных заболеваний, остеопороза, депрессии, шизофрении, инсульта и рака. Компания взяла на вооружение технологию ДНК микрочипов, позволившую генетикам отследить сотни тысяч однонуклеотидных полиморфизмов в рамках единого исследования ассоциаций, охватывающего весь геном. Момент истины для полногеномного поиска ассоциаций (GWAS) наступил в 2007 году, когда в журнале Nature была опубликована знаковая статья от фонда Wellcome Trust Сенгеровского института. В этой статье были опубликованы результаты исследования, проведенного с участием около 17 тысяч человек. Результатом этого исследования было выявление аллелей, вызывающих семь распространенных заболеваний, в том числе депрессию, болезнь сердца и болезнь Крона. На сегодняшний день уже существуют воспроизводимые опыты, доказывающие ассоциацию более 10 тысяч вариантов всевозможных патологических состояний с генетическими признаками: кардиологических расстройств, фибрилляции предсердий, многих видов рака, артрита, волчанки, целиакии, причем этот список далеко не полон.
Одновременно со стремительным падением стоимости полногеномного секвенирования и ее приближением к отметке в тысячу долларов росли амбиции ученых, планировавших крупномасштабные популяционные исследования. Речь шла уже не об идентификации отдельных генов, а об обеспечении проекта комплексного геномного здравоохранения. Примеры таких проектов ранее уже существовали: рассмотренный выше FarGen (Фарерские острова), Genomics England (финансируемая правительством Великобритании программа по секвенированию ДНК 100 тысяч пациентов), Precision Medicine Initiative (Инициатива в сфере точной медицины) в США. Первое поколение исследователей генома, включающее академические и коммерческие организации, зачастую сосредоточивалось на изучении одного гена или одного заболевания. Сегодня секвенирование ДНК и анализ геномов настолько усовершенствовались, что медицинские и фармацевтические компании могут вынашивать идеи крупномасштабных проектов по секвенированию геномов сотен тысяч человек в поискахмельчайших генетических мутаций, влияющих на наш разум, состояние организма и долголетие.

В 2015 году президент Обама официально объявил в Белом доме о старте проекта «Инициатива в сфере точной медицины»
Хотя сегодня мы значительно лучше представляем себе генетическую подоплеку распространенных болезней, чем до реализации проекта «Геном человека», пока мы выиграли лишь одну битву, но не войну в целом. С 2007 года были достоверно установлены ассоциации примерно с сотней генов и других участков генома, при которых у человека могут развиться воспалительные заболевания кишечника. Эта информация оказалась очень полезной, но встал другой вопрос: какие гены наиболее важны? Теперь исследователям требовалось проанализировать список наиболее актуальных и интересных «генов-подозреваемых», и практически каждый из этих генов может стать потенциальной терапевтической мишенью. Хуже того, почти половина ассоциаций, которые можно воспроизвести экспериментально, находятся вне генов, в плохо изученных «пустынных» регионах генома. В некоторых случаях такие генетические варианты нарушают работу регуляторных участков, влияя на работу генов, расположенных очень далеко. Более того, совокупность всех генов, которые ассоциированны с тяжелыми соматическими заболеваниями, например болезнью Крона или диабетом, составляет малую долю всех генетичеких изменений у конкретного человека. Эта досадная неопределенность часто именуется термином, напоминающим заглавие детективного романа: «скрытая наследуемость». Мне грустно об этом говорить, но генетические находки не так хорошо помогают нам понять биологию заболеваний, как нам хотелось. Еще один пример – шизофрения, проблема, крайне актуальная для моей семьи. Однако генетические исследования этой болезни весьма сумбурны. В 1988 году группа лондонских ученых объявила, что в ходе анализа сцеплений им удалось картировать доминантный ген шизофрении, расположенный в 5-й хромосоме. Результаты этого исследования были опубликованы в журнале Nature , равно как и результаты дальнейших исследований, безапелляционно развенчавших это заявление. Давайте перенесемся вперед на двадцать пять лет: представители нового поколения исследователей объединились, чтобы проанализировать миллионы последовательностей у тысяч пациентов в поисках таких аллелей, которые связаны с риском развития шизофрении. На начальном этапе исследований в нем участвовало шесть тысяч пациентов, затем 20 тысяч, но увеличение испытуемых не приблизило нас к пониманию проблемы. Расширенное исследование 110 тысяч больных и добровольцев из контрольной группы показало, что на подобные ассоциации указывает около сотни маркеров ДНК. Наиболее сильный маркер связан с геном четвертого фактора системы комплемента (C4), более известного своей ролью в реализации протективных свойств врожденного иммунитета, но, что весьма интересно, выполняющего совершенно иную функцию, приводя к мутациям, изменяющим нейронную сеть и влияющим на синаптическую пластичность, необходимое условие для обучения и памяти. По-видимому, чем активнее этот ген, тем выше риск развития шизофрении.
Читать дальшеИнтервал:
Закладка: