Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни

Тут можно читать онлайн Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Альпина нон-фикшн, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    От атомов к древу. Введение в современную науку о жизни
  • Автор:
  • Жанр:
  • Издательство:
    Альпина нон-фикшн
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5286-0
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Сергей Ястребов - От атомов к древу. Введение в современную науку о жизни краткое содержание

От атомов к древу. Введение в современную науку о жизни - описание и краткое содержание, автор Сергей Ястребов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Из чего состоят живые тела и при чем тут углерод? Что такое генетический код, кто такие вирусы, как устроено эволюционное древо и почему произошел кембрийский взрыв? Предлагаемая книга дает актуальные ответы на эти и многие другие вопросы. «Фокусом» рассказа служит эволюция жизни на Земле: автор считает, что только под этим углом зрения самые разные биологические проблемы обретают единый смысл. Книга состоит из четырех частей, темы которых последовательно расширяются: «Химия жизни», «Механизм жизни», «Древо жизни» и «История жизни».
Рекомендуется широкому кругу читателей, всерьез интересующихся современной биологией.

От атомов к древу. Введение в современную науку о жизни - читать онлайн бесплатно ознакомительный отрывок

От атомов к древу. Введение в современную науку о жизни - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Сергей Ястребов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Будем исходить из того, что структура любого организма в достаточно неплохом приближении определяется его геномом. В некоторых ситуациях это утверждение может быть спорным, но в том масштабе, какой нам сейчас нужен, оно отлично работает. Можно сказать, что организм — это производное генома, фрагмент среды, которую геном организует вокруг себя. Итак, сравним геномы клеточных организмов (бактерий, архей и эукариот) с геномами вирусов. Чем они принципиально отличаются друг от друга? Во всяком случае, не величиной. Мы уже видели, что некоторые вирусные геномы превосходят числом генов некоторые клеточные, причем принадлежащие и бактериям, и археям, и эукариотам (число генов и размер генома на самом деле далеко не одно и то же, но сейчас это неважно: сравнение числа генов и сравнение размеров геномов, измеренных в парах нуклеотидов, в нашем случае дадут примерно один и тот же результат). Значит, разница между вирусными и клеточными геномами не количественная. А какая же?

Ответить на этот вопрос нетрудно, благо многие геномы сейчас уже полностью прочитаны. Любой вирусный геном отличается от любого клеточного (даже имеющего такой же размер) долями, которые отведены в нем некоторым строго определенным категориям генов. Бросается в глаза, что есть как минимум две важные группы генов, свойственных клеткам, но не свойственных вирусам. Это гены энергетического обмена и гены, ответственные за создание рибосом. У подавляющего большинства вирусов никаких генов энергетического обмена нет вообще, а если даже они есть, то кодируют только отдельные ферменты, но не полную систему синтеза АТФ (выше мы обсуждали такой пример — вирус-цианофаг, модифицирующий систему фотосинтеза в разрушенной клетке синезеленой водоросли). А по поводу рибосом Рауль и Фортерр замечают, что, судя по биоинформатическим данным, последний общий предок всех клеточных организмов имел как минимум 34 рибосомных белка, и эти белки (вместе с кодирующими их генами) сохранились у всех бактерий, архей и эукариот. У вирусов же нет ни одного из них.

Таким образом, бактерий, архей и эукариот можно с полным основанием назвать рибосомокодирующими организмами (ribosome-encoding organisms, REO). Этот признак четко отделяет всех их, вместе взятых, от вирусов.

Пока что мы выявили, так сказать, «негативные» отличия — констатировали, чего вирусы лишены. А есть ли отличия «позитивные»? Обладают ли вирусы чем-то таким, что ни у каких клеток не встречается? Да. В геноме любого вируса, заслуживающего этого названия, есть гены, кодирующие белки капсида — белкового «футляра», заключающего в себе ДНК или РНК. Слово «футляр» тут, пожалуй, вводит в заблуждение, на самом деле вирусные капсиды частенько бывают довольно сложными структурами, построенными из разнородных частей и способными изменять свою геометрию (как, например, капсид бактериофага, который будто бы шприцем впрыскивает вирусный генетический материал в клетку бактерии). Вирус без капсида — это не вирус, а cубвирусная частица. Итак, особенность, которая есть у всех вирусов, и только у них, — это экспрессия генов капсида.

Таким образом, вирусы можно с полным основанием назвать капсид-кодирующими организмами (capsid-encoding organisms, CEO). Этот признак четко отделяет их от всех, кто состоит из клеток.

Человеческий разум любит дихотомии — отмечают Рауль и Фортерр. Деление организмов на рибосомокодирующие и капсид-кодирующие — это первичная дихотомия, на которой может основываться вся система живой природы. Она соответствует двум огромным эволюционным ветвям, разошедшимся на заре жизни, — двум ветвям, каждая из которых породила свой собственный биологический мир. Одни организмы «изобрели» рибосому и получили автономный аппарат трансляции — эффективный, но требующий постоянного снабжения энергией. А другие организмы сделали ставку на манипулятивное использование в своих интересах чужих аппаратов трансляции и на очень быстрое размножение. Сложностью при этом пришлось по большей части пожертвовать, но зато выживание генетического материала, рассеянного в чуждой и часто агрессивной среде, потребовало «изобретения» капсида.

Более того, не исключено, что заодно некоторые древние вирусы «изобрели» и ДНК [156] Forterre P. The origin of DNA genomes and DNA replication proteins // C urrent Opinion in Microbiology, 2002, V. 5, № 5, 525–532. . Ведь приспособительный смысл особенностей ДНК, отличающих ее от РНК, в том, что она чисто химически более устойчива (см. главу 8). А в условиях, когда вирионы переносились на большие расстояния водой или ветром, это могло быть особенно важно для сохранности их генетического материала. Между тем есть независимо обоснованная гипотеза, что первые клетки были РНК-содержащими — аналогично тому, как бывают РНК-содержащие вирусы [157] Forterre P. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells // Biochimie , 2005, V. 87, № 9–10, 793–803. . Это хорошо согласуется с тем фактом, что рибосомы со всем прилагающимся к ним набором РНК и белков появились раньше, чем клеточные механизмы репликации ДНК (во всяком случае, к таким выводам приводят данные сравнительной геномики). А если первые ДНК-содержащие вирусы уже существовали в эпоху первых клеток, то… Почему бы этим клеткам не получить «ноу-хау» хранения генетической информации на ДНК прямо от вирусов? Такой обмен генами вполне возможен. Тогда получается, что взаимодействие (или даже слияние) ДНК-содержащего вируса и РНК-содержащей клетки произвело на свет ДНК-содержащую клетку — ту самую форму жизни, которая сейчас доминирует на Земле.

Еще более вероятно, что некоторые клеточные организмы, а именно эукариоты, получили от вирусов механизм кэпирования информационной РНК (см. главу 10). Интрига тут вот в чем. Вирус, стремящийся подчинить себе крупную клетку, крайне заинтересован в том, чтобы его информационная РНК отличалась от обычной клеточной — например, несла на каком-нибудь своем конце специальную химическую метку. Тогда все молекулы иРНК, лишенные этой метки, можно будет разрушить, разобрав на отдельные нуклеотиды, а молекулы иРНК с меткой (принадлежащие вирусу) сохранить и направить на рибосомы, чтобы они дали вирусные белки. И в ходе эволюции вирусов такие метки действительно были «изобретены». Например, у поксвирусов — крупных ДНК-содержащих вирусов, к которым относится вирус оспы, — к 5'-концу каждой иРНК «пришивается» мостиком из трех фосфатов особый модифицированный нуклеозид (гуанозин с добавочной метильной группой), причем «пришивается» он уникальным способом, как бы задом наперед. Поксвирусы — паразиты эукариот. А у самих эукариот, во всяком случае у современных, информационная РНК всегда помечается абсолютно так же! Собственно, эта-то метка и называется кэпом. Причем ни у бактерий, ни у архей кэпирования нет. Очень похоже, что эукариоты заимствовали этот механизм, вместе с обеспечивающими его генами, от своих вирусов [158] Forterre P., Prangishvili D. The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties // Annals of the New York Academy of Sciences , 2009, V. 1178, № 1, 65–77. .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сергей Ястребов читать все книги автора по порядку

Сергей Ястребов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




От атомов к древу. Введение в современную науку о жизни отзывы


Отзывы читателей о книге От атомов к древу. Введение в современную науку о жизни, автор: Сергей Ястребов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x