Александр Марков - Эволюция. Классические идеи в свете новых открытий
- Название:Эволюция. Классические идеи в свете новых открытий
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2014
- Город:Москва
- ISBN:978-5-17-083218-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание
Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.
Эволюция. Классические идеи в свете новых открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Повторяемость коротких вставок и делеций, дупликаций и вставок мобильных элементов оказалась выше, чем у точечных мутаций. Наибольшая повторяемость характерна для крупных делеций: 82 из 119 таких делеций (69 %) зарегистрированы более чем в одной линии. Но это следствие организации геномов [56] Выпавшие фрагменты ДНК часто были заключены между копиями мобильных элементов. Дело в том, что вероятность делеции участка ДНК повышается, если он заключен между двумя одинаковыми последовательностями. Поэтому распределение повторяющихся последовательностей (в том числе мобильных элементов) по геному влияет на его эволюционную судьбу.
.
Тот факт, что наборы мутаций у 114 линий оказались разными, говорит о множественности путей адаптации к высокой температуре. Путей много — но они похожи друг на друга. Это видно из того, что сходство между линиями по набору генов , затронутых мутациями, оказалось намного выше, чем по самим мутациям. Если взять наугад любые две из 114 линий, то одинаковых мутаций у них окажется в среднем лишь 2,6 %, а одинаковых генов, в которых закрепились мутации, — 20,2 %. Если объединить гены в функциональные блоки (например, рассматривать все гены, отвечающие за транскрипцию), то сходство линий окажется еще выше: 31,5 %.
Таким образом, повторяемость (воспроизводимость) путей адаптации бактерий к перегреву оказалась низкой на уровне конкретных мутаций, но довольно высокой на уровне генов и функциональных блоков. Невозможно предсказать, какие именно мутации обеспечат адаптацию в каждом конкретном случае, однако набор генов, которые будут затронуты этими мутациями, более ограничен. Исследование показало, что одна и та же эволюционная «цель» — в данном случае приспособление к высокой температуре — может быть достигнута многими способами. На уровне конкретных мутаций эволюция оказалась малопредсказуемой. На уровне генов и генных комплексов предсказуемость и повторяемость эволюции оказались выше.
—————
Репертуар эволюционных «решений» ограничен
Когда Н. И. Вавилов обнародовал «закон гомологических рядов в наследственной изменчивости», утверждающий, что у близких видов наблюдаются сходные ряды изменчивости, то немедленно был обвинен в антидарвиновских настроениях. Действительно, если мутации случайны, то и эволюционные траектории, казалось бы, тоже должны быть случайными. Их направление должно бы зависеть только от внешних условий, к которым вид обязан как следует приспособиться. Сходные адаптивные (полезные) признаки можно объяснить сходной направленностью отбора, тогда как у нейтральных признаков — тех, что не влияют на приспособленность, — появление сходства маловероятно. Параллельные признаки, которыми оперировал Вавилов (а он работал с признаками зерновых культурных растений), нейтральны, и в этом случае сходству репертуара изменчивости вроде бы неоткуда взяться. Тем не менее гомологические ряды существуют (Н. И. Вавилов был строг с фактами), так что довольно долго о законе гомологических рядов предпочитали не рассуждать.
Но постепенно стало ясно, что фактов параллельной эволюции как на микро-, так и на макроуровне такое колоссальное изобилие, что ими нужно и должно заниматься всерьез. Генетики взялись за расшифровку путей формирования параллелизмов.
Наиболее значимые выводы о генетических механизмах параллельной эволюции основаны на анализе отдельных признаков, как адаптивных, так и нейтральных. К первым относится, например, развитие устойчивости к антибиотикам у бактерий или цветового зрения у цихлид (см. главу б). Ко вторым, нейтральным признакам можно отнести независимое появление темных пятнышек на крыльях у разных видов дрозофил — чем не гомологические ряды Н. И. Вавилова (см. главу 5)!
Вот важнейшие выводы, которые генетики сделали на основе детально изученных примеров:
• эволюция отчасти предсказуема, хотя в ее основе лежат случайные мутации;
• число возможных эволюционных траектории ограниченно, так как ограниченно число жизнеспособных комбинации мутационных изменении (из-за эпистаза, см. главу 1);
• сходные приспособления могут появляться в результате параллельного образования одинаковых мутаций в том или ином гене;
• сходные приспособления могут появляться в результате разных наборов мутаций в одном и том же комплексе генов;
• параллельные приспособления появляются чаще в результате изменений в регуляторных, а не белок-кодирующих участках генов.
Рассмотрим один из недавно «расшифрованных» случаев параллельной эволюции. Этот пример показывает, как легко появляются сходные признаки у разных видов ( McGrath et al., 2011 ). Генетики из университетов Юты, Флориды и Рокфеллеровского университета работали с уже знакомыми нам объектами — нематодой Caenorhabditis elegans и с ее родственницей C. briggsae . В их распоряжении были разные линии C. elegans , которые хотя и произошли от одной исходной гермафродитной особи, но велись изолированно в последние 50 лет. Этот материал позволил проследить образование параллельных мутаций как у особей со сходным геномом, так и у разных видов.
Ученых интересовал конкретный признак — формирование так называемой дауэровской, или «спящей», личинки. Спящая личинка у ценорабдитис образуется при стрессовых температурах, недостатке пищи или перенаселении. В таком состоянии нематода благополучно переживает худшие времена, а при улучшении условий начинает развитие с прерванной точки, т. е. с третьей линьки. В природе перенаселение грозит популяции голодом и потому воспринимается как сигнал к формированию спящей личинки. В лабораторных условиях при перенаселении (а как же иначе может быть в культурах?) дауэровская личинка все равно формируется, хотя пища всегда в изобилии. При этом подавляющая часть популяции перестает размножаться — «в строю» остаются лишь те особи, которые почему-либо не среагировали на сигнал перенаселения. Ясно, что именно они и получат преимущество в изобильной лабораторной среде. Именно поэтому в лабораторных культурах нематоды довольно быстро перестают реагировать на сигнал перенаселения и формировать спящую личинку. Авторы изучили три лабораторные популяции, параллельно утратившие спящую стадию: две популяции C. elegans и одну C. briggsae . Естественно, ученые хотели выяснить, за счет каких мутаций в трех разных линиях появилось это адаптивное новшество.
Дауэровская личинка начинает формироваться при повышении концентрации особого феромона (чем больше животных в культуре, тем выше его концентрация). Этот феромон вызывает формирование спящей личинки у исходной лабораторной линии C. elegans , зато не действует на две эволюционировавшие линии нематоды.
Читать дальшеИнтервал:
Закладка: