Александр Марков - Эволюция. Классические идеи в свете новых открытий
- Название:Эволюция. Классические идеи в свете новых открытий
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2014
- Город:Москва
- ISBN:978-5-17-083218-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание
Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.
Эволюция. Классические идеи в свете новых открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Соответствует ли генетическое расхождение фагов расхождению по фенотипу, т. е. по способности заражать те или иные бактерии? В поисках ответа биологи вносили разных подопытных вирусов в каждую из шести популяций бактерий, коэволюционировавших с вирусами, и подсчитывали число «удачных» заражений. Оказалось, что вирусные популяции К различаются по способности заражать бактерий из разных линий, т. е. имеют разные «спектры инфекционности». Чем выше генетическое сходство вирусов, тем более сходны и их спектры инфекционности. Характерно, что ни один из вирусов Э не смог заразить ни одну из шести популяций бактерий из группы К. Получилось, что за 24 дня эксперимента бактерии сильно продвинулись в выработке средств защиты от фагов, и те паразиты, которые не эволюционировали вместе с ними, безнадежно отстали в гонке. Кстати, для бактериофагов неспособность заразить один и тот же штамм бактерий означает репродуктивную изоляцию, т. е. невозможность обмена генетическим материалом. Вирусный «секс» может происходить между двумя вирусами, только если они совместно инфицируют одну и ту же клетку. Таким образом, изменение спектров инфекционности у подопытных вирусов — это настоящее «видообразование в пробирке».
Авторы также заметили, что все вирусные гены, в которых вирусы К накопили больше мутаций, чем вирусы Э (таких генов было выявлено четыре), участвуют в прикреплении фага к бактериальной клетке. От успешности этой процедуры зависит, сумеет ли фаг заразить бактерию. По-видимому, именно эти гены являются для вирусов теми «вооружениями», от которых зависит успех в «гонке».
Рояль в кустах, или Скрытая изменчивость
Одно из фундаментальных свойств живых существ — помехоустойчивость. Многие случайные помехи (как внутренние — мутации, так и внешние — колебания условий среды) тем или иным способом компенсируются и не приводят к изменению фенотипа или снижению приспособленности. Отбор поддерживает развитие адаптаций, повышающих устойчивость фенотипа к помехам, в том числе к мутациям. Примером такой адаптации могут служить белки-шапероны, помогающие принять правильную трехмерную конфигурацию другим белкам, в том числе тем, которые не могут сделать это самостоятельно из-за мутаций или неподходящих условий. О шаперонах мы рассказывали в книге «Рождение сложности».
Помехоустойчивость ведет к тому, что в популяции свободно накапливаются мутации, которые до поры до времени не влияют на приспособленность или даже вовсе не проявляются в фенотипе. Эти мутации остаются нейтральными, пока все стабилизирующие системы организма работают нормально. Но если какой-то из механизмов, обеспечивающих помехоустойчивость, выйдет из строя (из-за сильного внешнего воздействия или мутации в одном из генов, необходимых для работы этого механизма), вся эта скрытая изменчивость может внезапно проявиться, и тогда в популяции произойдет всплеск видимой (явной) изменчивости.
Например, отключение шаперона Hsp90 у дрозофил приводит к массовому появлению разнообразных уродств. Если какая-то из проявившихся аномалий окажется полезной в новых условиях (или если экспериментаторы начнут искусственный отбор по одному из «уродств»), то со временем аномалия может стать нормой. Такой отбор будет способствовать закреплению мутаций, стабилизирующих фенотипическое проявление нового признака. В итоге бывшая «аномалия» может начать проявляться в фенотипе уже без всяких стрессовых воздействий, при нормально работающем Hsp90 ( Rutherford, Lindquist, 1998 ).
Скрытая изменчивость может играть важную роль в эволюции, помогая организмам приспосабливаться. Некоторые мутации, бывшие нейтральными в прежних условиях, могут оказаться полезными при изменении среды. Чем больше таких мутаций накопилось в генофонде, тем больше шансов, что хоть какие-то из них пригодятся в новых условиях.
Идея о положительном влиянии скрытой изменчивости на приспособляемость выглядит правдоподобной и даже очевидной. У нее есть немало косвенных подтверждений, но напрямую в эволюционном эксперименте ее удалось проверить лишь недавно ( Hayden et al., 2011 ). Швейцарские биохимики выбрали в качестве подопытного объекта не организмы, а «квазиживую» систему — популяцию размножающихся рибозимов.
Использовался рибозим Azo , изготовленный из самовырезающегося интрона бактерии Azoarcus . В геноме бактерии этот интрон-рибозим находится в гене транспортной РНК. Его функция в бактериальной клетке состоит в том, чтобы самостоятельно вырезать самого себя из молекулы тРНК, т. е. осуществить самосплайсинг. In vitro , т. е. в пробирке, этот рибозим умеет осуществлять «обратный сплайсинг», т. е. разрезать в определенном месте субстрат — молекулу РНК с определенной последовательностью нуклеотидов, причем «обрезки» остаются прикрепленными к рибозиму. По этим прикрепленным обрезкам можно отличить рибозим, успешно выполнивший свою функцию, от рибозима-неудачника. Это позволяет отбирать рибозимы, благополучно разрезавшие молекулу субстрата.
Исследователи размножили исходный рибозим и создали две одинаковые подопытные популяции (A и B). Эти популяции жили и размножались в течение десяти поколений. В каждом поколении проводился отбор на способность разрезать субстрат (короткую молекулу РНК). Те рибозимы, которым это удалось, отбирались и размножались при помощи мутагенных (склонных к ошибкам) полимераз. Скорость мутирования составляла в среднем одну мутацию на «особь» за поколение [57] По-видимому, такая скорость мутирования близка к оптимальной, если под оптимальностью понимать наибольшую приспособляемость. У реальных живых существ число мутаций на особь за поколение варьирует примерно от 0,001 (у некоторых микробов) до 30–60 (у млекопитающих).
. Чтобы следить за ходом эволюции, секвенировали по 2–3 тыс. «особей» (молекул рибозима) из каждого поколения.
Ученые ожидали, что за десять поколений такой жизни накопится значительный запас скрытой изменчивости. Рибозимы будут мутировать, вредные мутации отсеются отбором, а нейтральные будут копиться. Исходный рибозим Azo справляется со своей функцией в широком спектре условий (например, он выдерживает нагревание до 80 °C). Это говорит о высокой «помехоустойчивости» рибозима и позволяет надеяться, что к мутациям он окажется так же толерантен, как и к скачкам температуры [58] Это один из «самых больших секретов» эволюции. Вырабатывая устойчивость к одному типу помех (например, к перепадам температуры), организмы, как правило, автоматически приобретают устойчивость и к другим помехам (например, вредным мутациям).
.
Надежды оправдались: обе популяции за десять поколений накопили изрядное количество мутаций. Исходных, немутантных молекул «дикого типа» почти не осталось. Большинство особей отличались от исходного рибозима 3–6 мутациями.
Читать дальшеИнтервал:
Закладка: