Александр Марков - Эволюция. Классические идеи в свете новых открытий
- Название:Эволюция. Классические идеи в свете новых открытий
- Автор:
- Жанр:
- Издательство:АСТ: CORPUS
- Год:2014
- Город:Москва
- ISBN:978-5-17-083218-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Эволюция. Классические идеи в свете новых открытий краткое содержание
Книга Александра Маркова и Елены Наймарк рассказывает о новейших исследованиях молекулярных генетиков и находках палеонтологов, которые дают ответы на эти и многие другие вопросы о видоизменениях в природе. Тысячи открытий, совершенных со времен Дарвина, подтверждают догадки родоначальников теории эволюции; новые данные ничуть не разрушают основы эволюционной теории, а напротив, лишь укрепляют их.
Александр Марков, заведующий кафедрой биологической эволюции биофака МГУ, и Елена Наймарк, ведущий научный сотрудник Палеонтологического института им. А. А. Борисяка, — известные ученые и популяризаторы науки. Двухтомник «Эволюция человека» (2011), написанный ими в соавторстве, стал настольной книгой не только для студентов и ученых-биологов, но и для множества людей за пределами профессионального сообщества.
Эволюция. Классические идеи в свете новых открытий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Из сравнения геномных последовательностей исходной популяции и двух других выяснилось, что феромон перестал работать из-за выпадения (делеции) генов двух рецепторов. Ясно, что если исчезают рецепторы к определенному веществу, то исчезает и реакция на это вещество, в данном случае — не формируется дауэровская личинка. В двух лабораторных линиях делеция прошлась по разным нуклеотидам, но в обоих случаях захватила оба гена. Таким образом, в двух популяциях независимо вышли из строя одни и те же гены, играющие роль посредников между феромоном и формированием дауэровской личинки.
У C. briggsae нашелся ген, родственный двум найденным посредникам. И, как легко догадаться, в лабораторной популяции, отказавшейся от спящей личинки, именно этот ген оказался вырезан делецией. Сколько ни добавляли феромона (того самого, с которым работали на C. elegans ), все личинки C. briggsae развивались своим чередом, не впадая в спячку. Зато на исходную (дикую) популяцию C. briggsae феромон действовал отлично.
Таким образом, в условиях, когда спящая личинка оказывается лишней или даже вредной, популяция быстро от нее избавляется. При этом отбор поддерживает мутации в сходных генах, приводящие эти гены в нерабочее состояние. Скорее всего, существует не так уж много мутаций, которые способны предотвратить формирование спящей стадии и одновременно не слишком вредны для животного. Для данного признака доступное решение, по-видимому, оказалось единственным.
Спящая личинка Caenorhabditis elegans (белая стрелка) в много клеточном плодовом теле почвенной амебы Dictyostelium .
Конечно, безопаснее изменить один рецептор, чем подстраивать друг под друга целую сеть регуляторов развития. Сенсорные рецепторы — световые, вкусовые, обонятельные — эволюционируют очень быстро, оперативно подлаживая организм к окружающей обстановке. Этот простой и быстрый путь не приводит немедленно к глубоким изменениям развития. Но он может открыть перед организмами новые эволюционные возможности. Например, изменения генов, кодирующих светочувствительные белки опсины, могут изменить цветовое восприятие, что в свою очередь скажется на эволюции внешнего вида животных под действием полового отбора (подробнее об этом мы поговорим в главе 5).
—————
Как происходит гонка вооружений
Эволюционная «гонка вооружений» — один из самых мощных двигателей эволюции. Если бы среда обитания оставалась строго постоянной, отбор, скорее всего, привел бы строение и физиологию организма к локальному оптимуму, после чего эволюционные изменения должны были бы замедлиться или прекратиться. Но среда не может быть абсолютно неизменной хотя бы потому, что для большинства живых существ важнейшие параметры среды зависят от других живых существ. Изменения одних организмов меняют среду для других и вынуждают их приспосабливаться к этим изменениям, что, в свою очередь, опять меняет среду, заставляя приспосабливаться первых, и так до бесконечности. Гонка вооружений может идти как между разными видами (например, когда газели и гепарды «соревнуются» друг с другом в скорости бега), так и внутри вида (той же газели, чтобы выжить, важно обогнать не гепарда, а хотя бы одну другую газель) или, например, между самцами и самками.
Эти соображения легли в основу «гипотезы Черной Королевы», о которой мы рассказали в главе 3. Согласно этой гипотезе, организмам приходится постоянно эволюционировать, чтобы сохранить свою приспособленность на прежнем уровне («бежать со всех ног, чтобы остаться на месте»).
Гипотеза подтверждается многочисленными косвенными фактами, но есть и прямые эксперименты. В одном из таких британские зоологи рассмотрели сопряженную антагонистическую эволюцию паразитов и их хозяев и показали, как гонка вооружений повышает генетическое разнообразие и ускоряет эволюционные изменения ( Paterson et al., 2010 ). В качестве модельной системы «паразит — хозяин» использовали бактерию Pseudomonas fluorescens и вирус-бактериофаг Φ2. В этой системе действительно происходит эволюционная гонка вооружений: вирусы вырабатывают новые адаптации для заражения бактерий, а бактерии — новые средства защиты ( Brockhurst et al., 2007 ). С этой системой удобно работать, потому что вирусы и зараженные ими бактерии можно в любой момент разделить: бактерии можно «вылечить» от вирусов при помощи специальных препаратов, не вредящих здоровью бактерии, а вирусные частицы в чистом виде могут быть выделены из культуры путем центрифугирования.
Итак, гонка начинается. Ее участники — 12 популяций одинаковых бактерий (потомков одной клетки) и исходно одинаковые вирусы. Каждая популяция содержала 10 млн бактерий и 10 тыс. вирусных частиц. Популяции разделили на две группы (по шесть популяций в каждой), получившие условные названия «эволюция» (Э) и «коэволюция» (К).
В популяциях группы Э было позволено эволюционировать только вирусам, а бактерии при каждом переносе культуры в свежую питательную среду (это делалось раз в двое суток) заменяли исходными, «наивными» микробами. В группе К позволялось эволюционировать как вирусам, так и их жертвам. Эксперимент продолжался 24 дня. После этого были отсеквенированы геномы вирусов в каждой из 12 популяций. Их затем сравнивали с геномом исходного вируса и между собой. Геномы бактерий не секвенировали (они примерно в 100 раз больше, чем у фагов).
Оказалось, что у вирусов К в ходе эксперимента зафиксировалось вдвое больше мутаций (в среднем по 23 мутации), чем у их коллег из группы Э (в среднем 11 мутаций). Таким образом, антагонистическая коэволюция действительно ускоряет эволюционные изменения.
Популяции из группы К не только накопили больше отличий от исходного вируса, они и друг от друга стали отличаться сильнее, чем популяции Э. Вирусы К ближе подошли к превращению в шесть разных вирусов. Это значит, что антагонистическая коэволюция, по-видимому, способствует генетической дивергенции (расхождению) и видообразованию.
Длины ветвей на этой дендрограмме отражают величину генетических различий между исходным вирусным геномом и популяциями из групп К и Э. Видно, что популяции К сильнее отличаются и от исходного вируса, и друг от друга, чем популяции Э. Параллельное независимое закрепление ряда мутаций в разных популяциях привело к тому, что на этой схеме 12 ветвей, соответствующих 12 экспериментальным популяциям, не расходятся в виде звездочки от своего общего предка, что в точности отражало бы их эволюционную историю, а образуют древовидную фигуру. Это, между прочим, лишний раз подчеркивает низкую достоверность эволюционных реконструкций, основанных на небольшом числе адаптивных признаков. По рисунку из Paterson et al., 2010 .
Читать дальшеИнтервал:
Закладка: