Александр Марков - Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
- Название:Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
- Автор:
- Жанр:
- Издательство:Астрель, Corpus
- Год:2010
- Город:Москва
- ISBN:978-5-271-24663-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Марков - Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы краткое содержание
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Во время репликации (копирования, удвоения) две цепочки разделяются, и на каждой по принципу комплементарности синтезируется новая цепочка, как показано на рисунке. Синтез осуществляется при помощи фермента ДНК-зависимой ДНК- полимеразы. Одна из двух новых цепей синтезируется подряд, без перерывов, потому что направление ее синтеза совпадает с направлением «расплетания» двойной спирали исходной молекулы ДНК. Вторая цепь синтезируется кусочками, задом наперед. Эти кусочки называются «фрагментами Оказаки» (в честь их первооткрывателя, японского молекулярного биолога Редзи Оказаки, пережившего бомбардировку Хиросимы и скончавшегося в 1975 году в 45-летнем возрасте от лейкемии). В итоге получаются две одинаковые молекулы, каждая из двух комплементарных цепей.
На приведенном рисунке возникла мутация — в правой молекуле напротив одного из гуанинов (Г) случайно встал аденин (А) вместо цитозина (Ц). Скорее всего, эта мутация будет замечена и исправлена специальными ферментами, функция которых как раз и состоит в исправлении подобных ошибок. Починку «неправильных» или поврежденных участков ДНК называют репарацией.
В нашем примере мутация возникла случайно. Впрочем, постойте. Случайно ли? Она ведь возникла на стыке двух фрагментов Оказаки, а процесс соединения этих фрагментов — некая особая операция, «технологически» отличающаяся от других этапов репликации, расплетания спирали и присоединения комплементарных нуклеотидов. Может быть, в нашей клетке забарахлила система соединения фрагментов Оказаки? А может, она забарахлила не случайно, а потому, что на нее оказал воздействие какой-то внешний или внутренний фактор? А если он внутренний, то клетка, наверное, может как-то контролировать его? А тогда, если хорошенько разобраться, не может ли в конечном счете оказаться так, что сама клетка «отдала команду» осуществить мутацию в данном месте ДНК? Если мы всерьез задумаемся над этими вопросами, то поймем, что было бы крайне удивительно, если бы живая клетка за 4 миллиарда лет эволюции так и не выработала никаких механизмов управления мутационным процессом. Ведь такие механизмы, во-первых, вполне возможны, во-вторых, могли бы оказаться очень полезными.
Впрочем, нет повода сомневаться в том, что значительная часть мутаций действительно возникает случайно — просто потому, что никакое копировальное устройство не может работать с абсолютной точностью. Кроме того, мутации могут происходить и без репликации, пока ДНК находится в двухцепочечном состоянии, — например, нуклеотиды могут претерпевать химические изменения под воздействием радиации, ультрафиолета или свободных радикалов, возникающих в ходе клеточного дыхания. Большинство ошибок в цепях ДНК будет замечено и исправлено, но какую-то небольшую их часть пропустит, не заметит даже самый строгий молекулярный «корректор».
Но мутации возникают не только потому, что невозможно копировать ДНК с абсолютной точностью. Мы привыкли думать, что мутации — это всегда некое нарушение, неправильность, ошибка, то есть что-то нежелательное, «мешающее нормально жить». В действительности это не всегда так. Изменение наследственной информации — неотъемлемая и необходимая часть жизни. Если бы геномы не менялись, на нашей планете, возможно, до сих пор жил бы только один вид очень примитивных микробов — тот самый Лука, общий предок всего живого (см. главу «Происхождение жизни»). Впрочем, и он бы давно вымер, не смог бы долго продержаться с неизменным геномом. А если бы молекулы РНК копировались с абсолютной точностью на этапе «преджизни», то и никакой Лука никогда бы не появился. Об этом, между прочим, свидетельствуют результаты экспериментов, проводимых исследователями РНК-мира. Для того чтобы в сообществе размножающихся молекул РНК зародилось что-то новое и полезное, совершенно необходимо, чтобы отдельные короткие молекулы, соединяясь в более длинные, могли обмениваться друг с другом своими участками (обмен участками между разными молекулами ДНК или РНК называется рекомбинацией). Рекомбинация — важнейший источник наследственной изменчивости наряду с «обычными» мутациями. В опытах с колониями РНК рекомбинация происходит сама собой, бесконтрольно, но в живой клетке она находится под контролем разнообразных и сложных регуляторных систем.
Очень важно понять, что изменения наследственной информации нужны всему живому не только в геологическом масштабе времени, чтобы постепенно совершенствоваться в течение миллионов лет. Естественный отбор не может «заглянуть» так далеко, поэтому и специальные механизмы для достижения столь отдаленных целей не могут развиться. Но наследственные изменения нужны здесь и сейчас, они необходимы нам постоянно. Особенно наглядно это видно на примере простейших живых систем — вирусов. Многие ученые, правда, не считают их живыми организмами, поскольку они не могут размножаться без помощи чужих клеток, но все же многие свойства живого у них есть. Да и кто в этом мире может похвастать абсолютной самодостаточностью? Разве что «отважный странник», подземный микроб, о котором рассказано во второй главе.
На примере вирусов хорошо видно, как они нарочно позволяют определенному количеству мутаций совершаться при каждой репликации. Таким способом они контролируют скорость мутирования и фактически превращают эволюцию в составную часть своего жизненного цикла, чуть ли не в основной компонент своего поведения.
—————
Вирусы-мутанты помогают друг другу в борьбе за выживание.Большинство вирусов, вызывающих болезни человека, — РНК-содержащие. Их наследственный материал хранится в форме РНК, а не ДНК, как у всех других форм жизни. Среди немногочисленных белков, закодированных в геноме таких вирусов, присутствует фермент РНК-зависимая РНК-полимераза, синтезирующий новые копии вирусной РНК (см. главу 1).
Популяции РНК-содержащих вирусов неоднородны: они состоят из целого набора генетически различающихся линий. Такие полиморфные популяции называют «квазивидами» — по аналогии с видами настоящих живых организмов, которые тоже всегда полиморфны. Процесс удвоения (репликации) вирусной РНК происходит с большим числом ошибок (мутаций), благодаря чему могут быстро возникать новые варианты вируса. У полиовируса — возбудителя полиомиелита — на каждый акт репликации приходится в среднем 1,9 мутаций. При этом, конечно, появляется много нежизнеспособных вариантов, однако эти потери оправданы. Высокая скорость мутирования помогает вирусам приспосабливаться к меняющимся условиям — к деятельности иммунной системы хозяина, новым лекарствам, переходам от одного хозяина к другому и из ткани в ткань.
Читать дальшеИнтервал:
Закладка: