Владимир Вакула - Биотехнология: что это такое?

Тут можно читать онлайн Владимир Вакула - Биотехнология: что это такое? - бесплатно полную версию книги (целиком) без сокращений. Жанр: Биология. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Биотехнология: что это такое?
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Вакула - Биотехнология: что это такое? краткое содержание

Биотехнология: что это такое? - описание и краткое содержание, автор Владимир Вакула, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Рассказывается о новом научно-практическом мировоззрении, способствующем решению глобальных проблем наших дней: продовольственной, энергетической, охраны здоровья человека. Читатель познакомится как с традиционной биотехнологией (хлебопечение, производство кисломолочных продуктов, виноделие и др.), так и с новейшей, связанной с геннетической, клеточной, белковой инженерией.

Биотехнология: что это такое? - читать онлайн бесплатно полную версию (весь текст целиком)

Биотехнология: что это такое? - читать книгу онлайн бесплатно, автор Владимир Вакула
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Подобные «откровения» японской компании можно и должно рассматривать не только как анонс технических и научных достижений, но и как серьезный вызов всем конкурентам, работающим в области сверхсложной компьютерной техники и биотехнологии.

Разумеется, достижения современной биотехнологии настолько разнообразны и значимы, что предсказания каких-либо более или менее достоверных направлений в ее развитии, жестко обозначенных заинтересованностью человечества в тех или иных результатах, весьма затруднительны. Предсказуемы лишь те, что дают практическую выгоду уже сегодня. Так, недавно одна из крупнейших химических компаний в мире — «Империал кемикал индастри», известная под сокращенным названием «Ай-Си-Ай», оповестила мир о получении нового вида полимера, так называемого полигидроксибутирата. Это первый в мире полимер, созданный не путем химического синтеза, а микробиологическим способом. По своим свойствам он напоминает один из наиболее распространенных видов пластмасс — полипропилен и может быть успешно использован для производства хирургических нитей, шпагата и других изделий. Думаю, что полимеры, полученные биотехнологическими методами, найдут очень скоро самое широкое применение прежде всего в медицине, вступая в непосредственный контакт с тканями живого организма. Предпосылок для такого прогнозирования предостаточно. И прежде всего уникальная чистота биосинтетических полимеров (содержание примесей всего 10-5—10-6%) и их абсолютная инертность по отношению к органам и тканям живого организма.

Вселяет оптимизм и сообщение по поводу того, что в некоторых странах уже получены микробиологическим путем различные мономеры, являющиеся исходным сырьем для синтеза полимеров, а также другой разнообразной химической продукции.

Одним словом, перспективы обнадеживающие. По крайней мере, специалисты в области биотехнологии считают, что к концу девяностых годов треть всех энергоемких химических процессов может быть заменена соответствующими биотехнологическими.

Вести о проникновении биотехнологических методов в те или иные отрасли науки уже сегодня не сходят со страниц газет и журналов. Не так давно та же японская пресса, например, сообщила, что известный производитель радиоэлектроники фирма «Хитачи» организовала у себя большую проектную группу в 200 человек, занимающуюся разработкой и организацией поставок предприятиям-потребителям биотехнологических приборов и оборудования, а также проведением научных разработок в области биоэлектроники. Конечная цель проектной группы — создание ключевых элементов электронного оборудования на биотехнологической основе — биодатчиков и биочипов.

Насколько эта проблема важна и актуальна, можно судить хотя бы по тому, что именно биодатчики выполняют роль мостов, перекинутых между биотехнологией и электроникой. А идея молекулярно-электронных устройств, сборка которых производится на молекулярном уровне, успешно помогает решать проблемы, связанные с «упадком» кремниевой технологии, кризис которой объясняется достижением пределов микрообработки данного материала.

Развитие биоэлектроники связано прежде всего с именами двух американских ученых, известных сегодня всему миру, — Картера и Мак-Элиа. Это их труды положили начало работам на стыке двух наук — биологии и электроники, — осуществляемым на уровне клеток, органов или всего организма.

Рассматривая молекулы живых организмов в качестве элементов, передающих информацию, запоминающих, переключающих, распознающих, усиливающих те или иные воспринимаемые ими сигналы, можно создать биодатчики, способные различать молекулы, то есть наделенные даром, которым обладают лишь живые организмы. Причем при создании таких датчиков комбинируются электрохимические и белковые элементы, скажем, антитела, рецепторы.

Самыми первыми биодатчиками были устройства, работающие на ферментах. Так был создан, например, амперметрический микробиодатчик. Схема его создания не столь уж и загадочна: сначала с помощью полупроводниковой технологии изготовляют микроэлектрод, а затем формируют на нем тонкую ферментную пленку.

Последующим этапом на пути конструирования биодатчиков стала иммобилизация на электроде всего нескольких молекул белка. Биодатчики, созданные усилиями двух наук — биотехнологии и электроники, — с успехом применяются в медицинской и пищевой промышленности, выполняют функцию тончайших измерительных приборов и безошибочно регистрируют даже незначительные изменения в окружающей среде.

Идея создания биочипа (биокристалла) также принадлежит одному из уже названных здесь американских ученых. Мак-Элиа, впервые предложивший элементы такого типа, ввел их и в эксперимент и в практику. Сегодня исследователи всего мира, работающие в области биотехнологии и микроэлектроники, знают эти элементы под названием биолитографических молекулярных переключателей.

В основе создания подобных биокристаллов лежит самосборка и самоорганизация белка. А микросхемы на кремнии получают в таких случаях методом литографии. Однако в них для этого непременно используются белки или ферменты — такова современная технология на кремнии. Но самой большой трудностью в данном процессе оказалось создание шаблона. И здесь на помощь исследователям пришли электронные лучи, то есть чистая электроника, без намека на что-либо живое. Но ученые уверены в том, что возможности метода многократно возрастут, если создавать шаблон с помощью одних биохимических реакций. В этом, по сути дела, и заключается идея Мак-Элиа.

Разумеется, все это очень сложно — и сборка, и сам принцип, на основе которого эти устройства работают. Вот почему, трезво оценивая положение вещей, в одном из своих недавних интервью Мак-Элиа заявил, что хотя успехи в создании тонких органических пленок налицо, их апробация лишь началась, а реализацию следует ожидать не менее чем через 15 лет. Другими словами, уже в XXI веке.

Но, как говорится, лиха беда — начало. И исследования в этой области, в том числе молекулярных генераторов, АТФ-генераторов (устройств воспроизведения АТФ), элементов памяти, систем передачи информации, химических усилителей и т. п. — ведутся самым широким фронтом. И уже сконструировано немало электрохимических устройств (биосенсоров), основанных на контакте ферментов, целых бактериальных клеток и культуры животных тканей с различными электродами. А потребность в них растет и растет. Особенно в связи с тем, что в таких приборах и устройствах остро нуждается абсолютное большинство приоритетных направлений НТП.

Так, электронная фирма «Ниппон дэнки» и биотехнологическая фирма «Куреха кагаку» совместными усилиями создали биокристаллы (биочипы) и биодатчики с такой высокой плотностью интеграции, что она оказалась в 100 миллионов раз выше существующих больших интегральных схем (БИС).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Вакула читать все книги автора по порядку

Владимир Вакула - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Биотехнология: что это такое? отзывы


Отзывы читателей о книге Биотехнология: что это такое?, автор: Владимир Вакула. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x