Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома

Тут можно читать онлайн Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома - бесплатно ознакомительный отрывок. Жанр: Биология, издательство Лаборатория знаний, год 2016. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Мусорная ДНК. Путешествие в темную материю генома
  • Автор:
  • Жанр:
  • Издательство:
    Лаборатория знаний
  • Год:
    2016
  • Город:
    Москва
  • ISBN:
    978-5-906828-62-0
  • Рейтинг:
    4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома краткое содержание

Мусорная ДНК. Путешествие в темную материю генома - описание и краткое содержание, автор Несса Кэри, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Расшифровав генетический код, ученые обнаружили, что лишь 2% ДНК несут информацию о белках. А для чего же тогда нужны оставшиеся 98%? Поначалу генетики решили, что это мусор, хлам. Однако совсем недавно стало ясно — все гораздо сложнее, и именно эти «мусорные» области ДНК определяют сложность человеческого организма, его возможные болезни и даже — скорость старения! Здесь — ключи к пониманию эволюции и сущности самой жизни.

Сегодня множество ученых в самых разных лабораториях мира пытаются проникнуть в тайны «мусорной» ДНК, этой темной материи нашего генома. Об их последних результатах — в увлекательной книге английского генетика Нессы Кэри.

Мусорная ДНК. Путешествие в темную материю генома - читать онлайн бесплатно ознакомительный отрывок

Мусорная ДНК. Путешествие в темную материю генома - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Несса Кэри
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя мутации сплайсинг-сайтов встречаются сравнительно часто, причиной генетических заболеваний чаще становятся мутации тех участков генов, которые кодируют аминокислоты. Одни мутации вызывают проблемы из-за того, что вводят стоп-сигналы, мешающие рибосомам синтезировать белки нужного размера на основе матриц информационной РНК. Другие мутации способны изменять генетический код, побуждая ген кодировать не ту аминокислоту, какую следует. К примеру, триплет ЦАЦ кодирует аминокислоту гистидин, а триплет ЦАГ — глутамин, другую аминокислоту. Но ученые предполагают, что до 25% мутаций, вызывающих замену аминокислоты таким путем, влияют также и на сплайсинг ближайших участков информационной РНК. В некоторых случаях причиной болезни может служить не единичная замена аминокислоты сама по себе, а то изменение, которое вносит исходная нуклеотидная замена в характер сплайсинга информационной РНК.

Однако в большинстве случаев очень трудно продемонстрировать, что это действительно так. Даже если ученые сумеют показать, что изменение в РНК приводит и к нарушению картины сплайсинга, и к замене аминокислоты, как определить, какой из этих эффектов вызывает симптомы болезни? Что служит их причиной — сам белок, где в определенном месте одна аминокислота заменена на другую, или еще и то, что белок возник в результате непривычного сплайсинга?

Природа сама предоставила нам свидетельства того, что иногда мутация в кодирующем участке способна вызывать болезнь посредством влияния на сплайсинг, а не посредством замены аминокислоты. Существует весьма необычное заболевание, названное прогерией Хатчинсона-Гилфорда в честь двух ученых, которые впервые его выявили. Слово «прогерия» означает «раннее старение», и эта ее форма невероятно опасна. Она встречается крайне редко, затрагивая примерно одного ребенка из 4 миллионов 15.

Родившиеся с этим недугом поначалу кажутся совершенно здоровыми, но уже в течение первого года жизни их рост резко замедляется, а потом и вовсе останавливается. У детей начинают проявляться многие симптомы старости: редеют волосы, наступает облысение, тело становится жестче. Хотя у них все-таки не развиваются некоторые заболевания, свойственные пожилому возрасту (скажем, болезнь Альцгеймера), зато возникают серьезные сердечно-сосудистые заболевания. Именно от них несчастные дети умирают еще в раннем подростковом возрасте: летальный исход становится следствием инфаркта или обширного инсульта.

В 2003 году специалисты выявили генетическую мутацию, которая вызывает прогерию Хатчинсона-Гилфорда. У каждого из обследованных пациентов обнаружилась новая мутация (мутация de novo), то есть такая, которая спонтанно возникла в яйцеклетке или сперматозоиде кого-то из родителей. Невероятно: у 18 пациентов, не связанных близким родством (всего обследовали 20) мутация оказалась совершенно одинаковой 16.

Последовательность ГГЦ в определенном гене мутировала и в результате сменилась на ГГТ. Этой мутации подверглась одна из тех областей гена, которые занимаются кодированием аминокислот. Может показаться, что перед нами сравнительно обычный, «лобовой» случай мутации, заменяющей одну из аминокислот в белке. Так что первым делом, разумеется, следует посмотреть на генетический код и выяснить, что же кодируют эти две последовательности. ГГЦ, нормальная последовательность, кодирует простую аминокислоту глицин. Однако ГГТ, мутантная последовательность, кодирует (внимание!) глицин же. Да-да, ту же самую аминокислоту!

Дело в том, что генетический код наделен определенной избыточностью. Как мы уже знаем, наш геном записан при помощи всего четырех букв — А, Г, Т и Ц (в РНК вместо буквы Т — буква У). Блоки из 3 букв (триплеты) используются для кодирования той или иной аминокислоты. Из 4 букв можно составить 64 трехбуквенные комбинации. Три из этих комбинаций — стоп-сигналы, приказывающие рибосоме больше не добавлять аминокислоты в белковую цепочку, которую она выстраивает. Остается 61 комбинация для кодирования аминокислот. Но наши белки содержат в общей сложности лишь 20 различных аминокислот. Поэтому некоторые аминокислоты можно кодировать несколькими различными трехбуквенными наборами. Одна крайность: глицин кодируется триплетами ГГА, ГГЦ, ГГГ и ГГТ (ГГУ). Противоположная крайность: аминокислоту метионин кодирует лишь комбинация АТГ (АУГ).

Но если при прогерии Хатчинсона-Гилфорда не меняется аминокислотная последовательность, кодируемая мутантным геном, что же вызывает такое резкое изменение фенотипа при этом заболевании? Вновь обратимся к рис. 17.5. Последовательность из двух нуклеотидных оснований, находящаяся в начале каждой промежуточной области гена, такова: ГТ. Но у страдающих этой болезнью нормальный триплет ГГЦ меняется на ГГТ, и участок, кодирующий аминокислоту, получает ненужный дополнительный сигнал сплайсинга. На фоне всех остальных сигналов сплайсинга в этой области генома такое неверное размещение ГТ действует весьма сильно. Сплайсосома разрезает информационную РНК в области, кодирующей аминокислоты, а не в мусорной области. Участки, кодирующие аминокислоты, соединяются неправильно, что приводит к потере примерно 50% аминокислот, которые должны располагаться на конце синтезируемого белка. В результате сам белок не обрабатывается должным образом и начинает вносить сумятицу в работу клеток. Мы пока точно не знаем, каким образом это приводит к необычному старению, которое мы наблюдаем у детей, страдающих данным заболеванием. Наиболее убедительное предположение на данный момент: в ходе таких процессов нарушается механизм поддержания нормального функционирования клеточного ядра. Это может приводить к изменениям в экспрессии генов и к разрушению ядра. Вероятно, некоторые гены и некоторые типы клеток чувствительнее к таким процессам, чем другие.

Есть еще одно детское заболевание — спинальная мышечная атрофия. При этой болезни нервные клетки, управляющие мышцами, постепенно отмирают, что приводит к деградации мышц и утрате подвижности. Существует целый ряд различных форм этого заболевания. При самой острой его разновидности средняя ожидаемая продолжительность жизни детей с этим недугом очень мала — меньше 18 месяцев 17. Для генетического заболевания оно распространено сравнительно широко: в Великобритании примерно один человек из 40 является его носителем, а значит, около полутора миллионов британцев несут в себе одну дефектную копию соответствующего гена. По счастью, для развития симптомов болезни требуются две мутантные копии гена, а не одна 18.

Спинальная мышечная атрофия возникает в результате удаления (делеции) гена SMN1 или прекращения его нормального функционирования. Если мы посмотрим на человеческий геном, нас может удивить, что такое изменение способно вызвать столь мощный эффект, поскольку в геноме имеется и другой ген, кодирующий тот же белок. Этот ген именуется SMN2. Отсюда очевидный вопрос: раз уж они кодируют один и тот же белок, почему ген SMN2 не может служить компенсацией поврежденного или утраченного гена SMN1 ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Несса Кэри читать все книги автора по порядку

Несса Кэри - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Мусорная ДНК. Путешествие в темную материю генома отзывы


Отзывы читателей о книге Мусорная ДНК. Путешествие в темную материю генома, автор: Несса Кэри. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x