Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома
- Название:Мусорная ДНК. Путешествие в темную материю генома
- Автор:
- Жанр:
- Издательство:Лаборатория знаний
- Год:2016
- Город:Москва
- ISBN:978-5-906828-62-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Несса Кэри - Мусорная ДНК. Путешествие в темную материю генома краткое содержание
Расшифровав генетический код, ученые обнаружили, что лишь 2% ДНК несут информацию о белках. А для чего же тогда нужны оставшиеся 98%? Поначалу генетики решили, что это мусор, хлам. Однако совсем недавно стало ясно — все гораздо сложнее, и именно эти «мусорные» области ДНК определяют сложность человеческого организма, его возможные болезни и даже — скорость старения! Здесь — ключи к пониманию эволюции и сущности самой жизни.
Сегодня множество ученых в самых разных лабораториях мира пытаются проникнуть в тайны «мусорной» ДНК, этой темной материи нашего генома. Об их последних результатах — в увлекательной книге английского генетика Нессы Кэри.
Мусорная ДНК. Путешествие в темную материю генома - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Добро пожаловать в мир малых РНК, могучего войска кочевых муравьев нашего генома. Эти молекулы РНК имеют небольшие размеры: обычно — лишь от 20 до 23 нуклеотидных оснований в длину. Их можно представлять себе как «подталкивающие» молекулы, способные придавать дополнительную тонкую настройку процессам контроля генетической экспрессии.
На рис. 18.1 схематически показано, как вырабатываются эти малые РНК и как они действуют. Их порождают двунитевые молекулы РНК. Затем малые РНК соединяются с нетранслируемыми областями на концах информационных РНК, создавая новую двухцепочечную РНК. Появление этой двунитевой структуры, зависящее от взаимодействия одной мусорной последовательности с другой, оказывает на информационную РНК либо одно, либо другое воздействие. Новая структура может либо таргетировать информационную РНК, чтобы ее разрушить, либо затруднить для рибосом трансляцию нуклеотидной последовательности этой информационной РНК в белки. В обоих случаях результат, по сути, один и тот же: резко падает количество белка, синтезируемого на основе данной информационной РНК [69] Полезно выделить два типа малых РНК. Малые РНК, запускающие разрушение информационных РНК. называются микроРНК. Малые РНК, затрудняющие трансляцию, называются малыми интерферирующими РНК. Чтобы избежать лишнего нагромождения терминов, будем называть и те и другие просто малыми РНК.
,2.

Рис. 18.1.Схема упрощенно показывает, как клетка создает два разных типа малых РНК из более длинных молекул РНК. Эти два типа малых РНК подавляют генетическую экспрессию по-разному, как показано в нижней части схемы.
Малые РНК, служащие триггерами разрушения молекул и информационной РНК, должны идеально соответствовать своим мишеням. Те же, которые лишь ингибируют трансляцию информационных РНК, гораздо более легкомысленны. Они соединяются с информационной РНК, даже если на ней соответствуют нужной мишени всего 6-8 нуклеотидов, расположенных подряд (это так называемая «посадочная последовательность», seed sequence [70] Похоже, в отечественной научной литературе пока нет устоявшегося перевода для данного термина. Обычно он дается в исходном виде. Изредка используются и такие варианты, как «затравочная последовательность», «порождающая последовательность», но все они не совсем передают суть происходящих процессов. (Прим. перев.)
). В результате одна малая РНК может соединяться более чем с одним типом информационных РНК, замедляя трансляцию. Еще одно потенциальное следствие такой неразборчивости в связях: относительное содержание различных информационных РНК в клетке будет влиять на степень контроля каждой из них со стороны той или иной малой РНК. А значит, каждая малая РНК будет оказывать свое особое действие — в зависимости от того, какие из ее мишеней экспрессированы в клетке и каково соотношение количеств этих молекул-мишеней.
Малые РНК: польза и вред
Существует отдельный кластер малых РНК, играющий важную роль в регуляции определенного типа клеток иммунной системы. Если у мышей этот кластер претерпевает сверхэкспрессию, то зверьки испытывают летальную сверхактивацию иммунной системы 3,4. С другой стороны, те мыши, у которых вообще отсутствует данный кластер, умирают либо незадолго до появления на свет, либо вскоре после рождения. У человека потеря одной копии этого кластера приводит к некоторым формам редкого заболевания — синдрома Файнгольда 5. Симптомы могут быть весьма различными. Нередко в их число входят деформации скелета, проблемы с почками, кишечная непроходимость, а также затруднения при обучении (средней степени) 6.
Следствия нарушения экспрессии данного кластера, состоящего всего из 6 малых РНК, кажутся странно разнообразными. Впрочем, удивляться такому разнообразию не стоит. По подсчетам специалистов, один только этот кластер может осуществлять таргетирование более тысячи генов, кодирующих белки 7.
Мусорные последовательности, кодирующие малые РНК, зачастую расположены внутри других мусорных областей — например, в генах, отвечающих за выработку длинных некодирующих РНК 8. Существует заболевание, именуемое гипоплазией развития хрящевой ткани и волосяного покрова человека (или просто гипоплазией хрящей и волос). Впервые его выявили в одной общине амишей, где каждый десятый оказался носителем мутации, вызывающей данную болезнь. Это невероятно высокая доля носителей. Она почти наверняка свидетельствует о том, что общину некогда основало небольшое число семей. У детей, страдающих этой болезнью, наблюдаются отклонения в формировании скелета, что приводит к форме карликовости, которая характеризуется укороченными конечностями. У них тонкие и редкие волосы. Кроме того, обычно у них встречается целый набор других дефектов (зачастую различный у разных пациентов).
Мутации, вызывающие это заболевание, происходят в гене, который отвечает за создание длинной некодирующей РНК. Но этот РНК-ген, сам по себе длинный, включает в себя и два гена малых РНК, мусор внутри мусора, и многие мутации влияют как раз на эти два меньших гена. В результате мутационных изменений разрушается структура малых РНК, так что они неправильно обрабатываются режущим ферментом (на рис. 18.1 он изображен в виде ножниц). А следовательно, они не экспрессируются на нормальном уровне. Эти две малые РНК осуществляют регуляцию в общей сложности более чем 900 генов, кодирующих белки. В числе таких регулируемых генов — те, о которых известно, что они влияют на развитие скелета и рост волос, однако они задействованы и в ряде других систем организма. Вероятно, именно поэтому те мутации, которые воздействуют на уровень экспрессии и функционирование этих малых РНК, также могут приводить к нарушениям в самых разных системах органов больных детей 9.
С учетом того, какую важную роль играют малые РНК в тонкой настройке генетической экспрессии, неудивительно, что эти мусорные молекулы, как выясняется, оказывают весьма существенное влияние на процессы развития организма. На этой стадии жизни даже, казалось бы, незначительные флуктуации генетической экспрессии могут отзываться серьезными последствиями. Помните пружину-«слинки», которая от малейшего толчка принимается шагать вниз по лестнице?
Малые РНК и стволовые клетки
Отличная демонстрация важности малых РНК — процесс перепрограммирования клеток человеческих тканей, в ходе которого эти клетки становятся плюрипотентными стволовыми клетками, обладающими возможностью создавать практически любую ткань. С этой технологией мы познакомились в главе 12, где она схематически показана на рис. 12.1. Хотя первоначальная работа, с такой необычайной быстротой награжденная Нобелевской премией, действительно принадлежит к числу выдающихся, у предложенного подхода имеется ряд ограничений. Да, главные белки-регуляторы могут загнать «слинки» процессов развития обратно, вверх по лестничному пролету, но они делают это довольно-таки неэффективно. Удавалось «обратить» лишь незначительную долю клеток, и сам процесс занимал долгие недели. Через 5 лет после этих революционных открытий другие ученые усовершенствовали данную методику. Они обрабатывали зрелые клетки теми же главными регуляторами, которые использовались в первоначальных экспериментах, но добавили и кое-что новое. Они добивались сверхэкспрессии кластера малых РНК, который, как удалось показать ранее, имеет высокий уровень экспрессии в нормальных эмбриональных стволовых клетках. Ученые обнаружили, что при такой искусственно вызванной совместной сверхэкспрессии этих малых РНК и исходных главных регуляторов зрелые клетки снова становятся плюрипотентными стволовыми клетками, как мы и могли бы предполагать. Но доля клеток, трансформировавшихся в стволовые, оказалась более чем в 100 раз выше, чем при использовании одних только главных регуляторов. Кроме того, весь процесс шел теперь гораздо стремительнее. И наоборот, если исследователи задействовали главные регуляторы, но подавляли экспрессию эндогенного кластера малых РНК в зрелых клетках, эффективность перепрограммирования таких клеток резко падала. Так удалось показать, что данный кластер малых РНК действительно играет ключевую роль в способствовании регулированию сигнальных сетей, которые определяют, какой станет клетка 10,11.
Читать дальшеИнтервал:
Закладка: