Владимир Петров - История развития стандартов

Тут можно читать онлайн Владимир Петров - История развития стандартов - бесплатно ознакомительный отрывок. Жанр: История. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    История развития стандартов
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Владимир Петров - История развития стандартов краткое содержание

История развития стандартов - описание и краткое содержание, автор Владимир Петров, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Описана истории развития стандартов на решение изобретательских задач, являющиеся разделом теории решения изобретательских задач — ТРИЗ, созданная Г. С. Альтшуллером. В работе проведен анализ всех известных автору модификаций стандартов. Приведены тексты первых 11 стандартов в оригинальном виде.
Работа может быть полезна в первую очередь преподавателям и разработчикам ТРИЗ и познавательна всем, кто интересуется историей развития ТРИЗ.

История развития стандартов - читать онлайн бесплатно ознакомительный отрывок

История развития стандартов - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Владимир Петров
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2. Система стандартов должна содержать механизмы выполнения известных законов развития техники.

3. В системе стандартов должны быть применены все поля и известные физические, химические, биологические и математические эффекты. Возможно введение и других эффектов.

4. Общие предложения по структуре будущей системы стандартов.

4.1. Стандарты на изменение системы. Система должна строиться по нескольким линиям.

4.1.1. Линия изменения структуры веполя: невеполь, веполь, комплексный веполь, сложный веполь (цепной, двойной, смешанный), управляемый веполь. Управляемый веполь использует более управляемые вещества и поля. Динамически управляемый веполь (адаптивный или самонастраивающийся веполь). Могут быть и более сложные комбинации структуры веполей, например, сложный комплексный веполь (цепной комплексный веполь, двойной комплексный веполь, смешанный комплексный веполь), управляемый комплексный веполь (со всеми его подвидами) и динамически управляемый комплексный веполь со всеми видами и подвидами.

4.1.1.1. Более управляемые вещества подчиняются закономерностям:

4.1.1.1.1. Увеличение степени дробления.

4.1.1.1.2. Использование прогрессивных («умных») веществ, отзывчивых на поля.

4.1.1.2. Увеличение степени управляемости полей определяется цепочкой, от гравитационного до биологического поля.

4.1.1.3. Согласованием веществ и полей.

4.1.1.4. В динамически управляемом веполе изменение полей, веществ и структуры, осуществляется в пространстве и времени, так, чтобы обеспечить оптимальные условия и процессы для достижения конечной цели.

4.1.2. Линия изменение структуры системы: переход на микроуровень и в надсистему.

4.2. Структура стандартов на измерение должна быть аналогична структуре стандартов на изменение и включать стандарты на управление.

4.3. Стандарты на применение стандартов должны максимально использовать ресурсы имеющейся системы, подсистем, надсистемы и окружающей среды, включая и системный эффект.

4.4. Переход в надсистему, а вернее переход к принципиально новым системам, должен осуществляться по нескольким этапам.

4.4.1. На функциональном уровне.

4.4.1.1. Выполнение системой функций надсистемы и/или включение дополнительных функций.

4.4.1.1.1. Определение функции надсистемы.

4.4.1.1.2. Обеспечение функциональной полноты (обеспечение всех дополнительных функций, обеспечивающих работоспособность системы).

4.4.1.1.3. Поиск путей осуществления функции надсистемы и дополнительных функций.

4.4.1.2. Выявить альтернативные способы осуществления функции надсистемы без использования существующей системы.

4.4.1.3. Придать системе дополнительные функции.

4.4.2. На системном уровне.

4.5. Использование тенденций перехода к более управляемым полям — гипервеполи.

4.5.1. Гравиполи (гравитационное поле).

4.5.2. Мехполи (механическое поле).

4.5.2.1. Трибополи (трение).

4.5.3.Теполи (температурное поле).

4.5.4. Феполи (магнитное поле).

4.5.5. Эполи.

4.5.3.1. Элполи (электрическое поле).

4.5.5.2. Элемполи (электромагнитное поле).

4.5.6. Ополи (оптическое поле).

5. Отдельные детали можно посмотреть в приложении 23.

Работы по модернизации системы 76 стандартов

В работах [7—11] проводится анализ существующего состояния ТРИЗ. В работе [11], в частности, указан один из недостатков: «Инструменты ТРИЗ не представляют собой единую систему, а разбиты на независимые части (приемы, эффекты, стандарты) и непонятно, когда и как их использовать».

При решении задач пользователю ТРИЗ сложно самостоятельно выбрать подходящий для решения его задачи тип инструмента. Он вынужден выбирать его наугад или последовательно применять каждый из инструментов. В целом инструменты дополняют друг друга, но отдельные из них содержат повторяющиеся элементы.

Первая попытка решить данную проблему была предпринята в середине 70-х годов XX века группой исследователей ленинградской школы ТРИЗ (Б. Злотин, Э. Злотина, С. Литвин,

В. Петров). Был разработан адаптивный АРИЗ. Он состоял из блоков и, в зависимости от решаемой задачи, алгоритм подсказывал как, когда и в какой последовательности нужно использовать отдельные блоки. АРИЗ адаптировался под степень сложности задачи. Самые простые задачи решались с помощью основной цепочки АРИЗ

(АП — ТП — ИКР — ФП — решение). С увеличением степени сложности задачи, увеличивалась степень сложности (подробности) АРИЗ. Самые сложные задачи решались по алгоритму значительно подробнее АРИЗ-85-В.

Следующим шагом развития был «Комплексный метод», разработанный горьковской школой ТРИЗ под научным руководством Б. Голдовского. Все элементы ТРИЗ были разбиты на операторы, которые применялись в соответствии с разработанным алгоритмом.

В конце 80-х годов XX века Б. Злотин и А. Зусман разработали систему операторов, которая была использована в компьютерной программе IWB.

Л. Певзнер разработал концепцию создания микростандартов для алгоритма решения задач на ЭВМ [12].

Все эти работы значительно облегчили использование инструментов ТРИЗ при решении задач. Однако они полностью не избавили ТРИЗ от указанных недостатков. Отдельные части ТРИЗ дублируют друг друга, и нет однозначности в использовании инструментов ТРИЗ.

ТРИЗ содержит богатейший материал, накопленный путем исследования миллионов патентов и многолетней апробации ТРИЗ во время обучения и решения практических задач. Этот материал нужно использовать для построения нового поколения ТРИЗ.

Новая система стандартов в общих чертах была разработана автором в начале 90-х годов XX века 26 26 Петров В. Усовершенствованная система стандартов на решение изобретательских задач. Тель-Авив, 1999. . Следующая модификация 27 27 Petrov V. New system of standard solution of inventive problems. ETRIA World Conference — TRIZ Future 2003. November 12—14, 2003 содержала более 150 стандартов. Модификация 2004 г. 28 28 Петров В. Новая система стандартов на решение изобретательских задач. Тель-Авив, 2004. включала более 250 стандартов, 2005 г. 29 29 Петров В. М. Расширенная система стандартов. — Труды Международной конференции МА ТРИЗ Фест — 2005. 3—4 июля 2005 г. Санкт-Петербург. Ст. Петербург, 2005. с. 45—46. http://www.metodolog.ru/00508/00508.html . — 384 стандартов, а 2007 г. 30 30 Петров В. Обобщенные модели решения изобретательских задач. — Тель-Авив, 2007 http://www.triz-summit.ru/ru/section.php?docId=3896 . — 512 стандартов. К каждой из систем стандартов автор разрабатывал алгоритм поиска конкретного стандарта или небольшой группы стандартов.

Выводы

Стандарты на решение изобретательских задач и система их использования была разработана Г. Альтшуллером. Последняя модификация включает 76 стандартов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Петров читать все книги автора по порядку

Владимир Петров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




История развития стандартов отзывы


Отзывы читателей о книге История развития стандартов, автор: Владимир Петров. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x