Николай Карпан - Чернобыль. Месть мирного атома
- Название:Чернобыль. Месть мирного атома
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Карпан - Чернобыль. Месть мирного атома краткое содержание
Чернобыль. Месть мирного атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Контроль энерговыделения
Для прямого измерения энерговыделения по радиусу и высоте в активной зоне применялись детекторы, которые устанавливались в технологических каналах реактора в соответствии со схемой расположения измерительных каналов [75]. Сигналы детекторов вводились в систему физического контроля энерговыделения (СФКРЭ) и систему локального регулирования мощности реактора ЛАР-ЛАЗ.
В целом ДКЭ очень часто не отвечали техническим условиям как по ресурсу работы (ДКЭВ - 20000 ч. ДКЭР - 12500 час), так и по метрологическим характеристикам. Отказы ДКЭ были обусловлены, в основном:
- разгерметизацией защитных чехлов по сварным швам;
снижением сопротивления изоляции ниже 105 Ом (в условиях ионизирующих излучений);
- некачественным изготовлением разъемов;
- коротким замыканием в разъемах.
Для устранения этих причин необходимо было осуществить не только конструктивную доработку, но и выполнить ряд организационных мероприятий по улучшению условий изготовления, хранения, монтажа детекторов. Только в процессе монтажа и наладки количество отбракованных (по разным причинам) ДКЭ достигало 10 %.
Следует отметить недостаточность точек контроля энерговыделения в реакторе. Датчики ДКЭР были установлены только в 130 каналах (примерно в 8% ТК). В остальных 92% каналов с топливом мощность определялась расчетным путем по специальной интерполяционной программе. Контроль распределения мощности по высоте реактора осуществлялся всего 12-ю семизонными датчиками ДКЭВ.
Контроль параметров энергоблока
Система централизованного контроля (СЦК) «Скала» выполняла расчетные функции для обеспечения нормального функционирования реакторного и тепломеханического оборудования энергоблока.
Процесс освоения проектной мощности головного энергоблока на Ленинградской АЭС и дальнейшая эксплуатация блоков на других станциях выявили потребность в более высокой производительности вычислительного комплекса и расширении объема контролируемых параметров, что потребовало увеличения памяти вычислительного комплекса (состоящего из трех машин В-ЗМ) для введения новых функций.
В процессе своего тиражирования для вновь строящихся блоков «Скала» претерпела ряд изменений, связанных с частичной аппаратурной модернизацией, позволившей расширить оперативную память и ввести новые программные модули оптимального расчета поля энерговыделения по радиусу, а на отдельных блоках и программу выдачи рекомендаций по управлению стержням СУЗ. Эти «рекомендации» не имели успеха у операторов, поскольку их выдача не успевала за изменением поля энерговыделения.
Следует отметить, что элементная база, на которой была создана система Скала, морально устарела еще до пуска первого блока ЛАЭС, а её рабочий ресурс составлял всего 6 лет [76]. Средства отображения информации не отвечали техническому уровню и эргономическим требованиям того времени. И самое главное - выдача результатов расчетов запаздывала от контролируемых событий на 5-10 минут.
Для нормальной работы энергоблоков нужно было регулярно вносить в массив данных блочного вычислительного комплекса «СКАЛА» все изменения, которые произошли в активной зоне реактора. Кроме того, необходимо было регулярно обновлять основу для текущих расчетов по программе «ПРИЗМА» - полный физический расчет активной зоны. Для всех АЭС Минэнерго этот расчет выполнял только НИКИЭТ, монополизировавший эту работу, что создавало задержки с обновлением основы для «ПРИЗМЫ». Только за один год, в период с декабря 1983 года по декабрь 1984 года, для энергоблоков Курской. Чернобыльской и Смоленской АЭС было проведено в общей сложности 177 полных эксплуатационных физических расчетов (ЭФР), часть которых неизбежно содержала ошибки. В целом такая организация работы делала станции заложником Главного конструктора, т.к. расчет выполнялся не станционным персоналом, не отвечавшим за объективный контроль параметров энергоблоков.
Глава 8
МИФ О БЕЗОПАСНОСТИ РБМК
На 31 марта 1986 г. в промышленной эксплуатации находилось 14 энергоблоков с реакторами РБМК-1000 и один блок с РБМК-1500 (Латвия, г. Игналина):
4 блока на Ленинградской АЭС,
4 блока на Курской АЭС,
4 блока на Чернобыльской АЭС,
2 блока на Смоленской АЭС,
1 блок на Игналинской АЭС.
Могло быть и больше, потому что в 70-е годы прошлого века научному руководителю проекта, академику А.П. Александрову удалось убедить руководство СССР в полной безопасности этих реакторов. Он утверждал, что его можно поставить даже на Красной площади в Москве [77].
Новые руководители атомной отрасли тоже говорят о "совершенной безопасности" модернизированных РБМК и аппаратов современных проектов, и... не могут показать положительного заключения государственной экологической экспертизы ни на один из них. Факт появления над всеми западными реакторами непроницаемых (и очень дорогих) железобетонных колпаков (так называемых контейментов) неопровержимо свидетельствует об опасности, неизбежно исходящей от
современных атомных реакторов. Эти непроницаемые колпаки, теоретически, обеспечивают хоть какой-то приемлемый уровень безопасности окружающей среды от попадания в нее радиоактивности при аварии на атомной станции. Все АЭС с РБМК были построены без таких колпаков. Даже сам реактор не был включен в систему пассивной безопасности из прочно-плотных боксов. «Атомные бомбы, дающие электричество» - так называют наши АЭС на Западе. И для этого есть веские основания. Лишь по счастливой случайности у нас после Чернобыля не произошло новых крупных катастроф. Однако состояние, близкое к катастрофическому, имело место уже несколько раз. Чего стоит авария на Кольской АЭС в феврале 1993 года, когда в результате разрыва линий электропередач (во время обычной арктической пурги) чуть не случилась максимальная проектная авария. После отключения потребителей из-за аварии в энергосистеме, нагрузка АЭС автоматически снизилась и все четыре блока АЭС отключились, оставшись без электроэнергии для собственных нужд. Резервные дизель-генераторы запускались беспорядочно, начались опасные перепады давления в активной зоне реакторов, сбои в работе циркуляционных насосов... и в конце концов дизеля вышли из строя.
Напомню об аварии на ЛАЭС в марте 1993 года. Тогда, вследствие отказа клапана ЗРК в одном из технологических каналов, опять (как в 1975 году) произошло повреждение твэлов тепловыделяющей сборки (ТВС). В результате выброса радиоактивных газов мощность дозы в окрестностях блока увеличилась в 20 раз.
На АЭС России и на Игналинской АЭС (Литва) только с января 1992 по ноябрь 1994 года произошло более 380 аварийных ситуаций, в том числе 5 серьезных, с выходом радиоактивных веществ. "В целом состояние ядерной и радиационной безопасности в Российской Федерации нельзя признать удовлетворительным" это слова из официальной справки Госатомнадзора, написанной в 1993 году.
Читать дальшеИнтервал:
Закладка: