Николай Карпан - Чернобыль. Месть мирного атома
- Название:Чернобыль. Месть мирного атома
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2006
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Николай Карпан - Чернобыль. Месть мирного атома краткое содержание
Чернобыль. Месть мирного атома - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Другими важными последствиями аварийной ситуации явились выброс радиоактивной парогазовой смеси из РП блока № 1 и аварийное повышение давления в РП блока № 2. После разрыва стенки канала 62-44 парогазовая смесь из РП блока № 1 прошла транзитом аварийный конденсатор, была выброшена в трубопровод (Ду-1000) связи газовых контуров блоков и далее под колокол мокрого газгольдера. В этой части газового контура произошло кратковременное повышение давления до Р >
1,16 ата, что привело к выбросу ~ 800 кг воды из гидрозатворов в РП блока № 2, реактор которого работал на номинальной мощности. За счет испарения воды на металлоконструкциях, имеющих температуру ~ 300 °С, произошло резкое повышение давления в РП блока № 2 уже до Р > 1,8 ата, что в свою очередь привело к выбиванию остальных гидрозатворов реактора со стороны РП. Парогазовая смесь из РП блока №
2 выбрасывалась под колокол мокрого газгольдера и далее через его опорожненный гидрозатвор в венттрубу, вместе с парогазовой смесью из РП блока № 1. В результате этого выброса радиоактивными веществами была загрязнена значительная территория. Для ликвидации последствий этой аварии потребовалось около 3 месяцев ремонтных работ.
Анализ причин и последствий аварийного разрыва ТК выявил ряд недостатков в проектных решениях системы аварийного сброса парогазовой смеси из РП, отсутствие или недостаточную жесткость требований регламента по подготовке к пуску некоторых систем реактора, а также нарушения правил эксплуатации оборудования, допущенные оперативным персоналом. И только после такой серьезной аварии проектантами были разработаны и реализованы мероприятия по предупреждению подобных аварий. В числе таких мероприятий можно назвать:
- введение на блоках 1 и 2 ЧАЭС автоматической аварийной защиты реактора по сигналу повышения давления в РП (на остальных блоках она была введена ранее);
- реконструкция узлов гидрозатворов системы аварийного сброса парогазовой смеси из реакторного пространства (РП);
- доработка схем подачи газовой смеси в РП;
- введение 24 часовой предпусковой промывки КМПЦ после ремонтов;
- требование немедленного заглушения реактора при обнаружении течи в кладку и т. д.
Подробно анализ аварийной ситуации, описание ремонтных работ при ликвидации ее последствий и мероприятия по повышению надежности работы энергоблоков и предупреждению подобных ситуаций изложены в работе [70]. Анализ изменения радиационной обстановки на ЧАЭС и окружающей среде в период проведения ремонтных работ и последующего вывода реактора блока № 1 на мощность приведены в работе [71].
Версия №2 (ИАЭ им. Курчатова)
О том же событии рассказывает сотрудник института А.Н. Киселев [72]: «В 1982 году нашему Отделу радиационного материаловедения в ИАЭ (сейчас РНЦ “Курчатовский институт”) дали задание разобраться, почему в активной зоне ядерного реактора 1-го блока Чернобыльской АЭС стали разрываться технологические каналы. (В технологическом канале стоит кассета, состоящая из двух тепловыделяющих сборок, с которых снимается тепло потоком воды под давлением в 70 атмосфер). К исследованиям был привлечен и Отдел радиационного материаловедения (начальник отдела -Владимир Сергеевич Карасев) Института ядерных исследований в Киеве.
Была поставлена задача по определению причин этих разрушений. (В ОРМ ИЯИ исследования проводил Александр Александрович Шинаков). Исследования показали, что причиной разрушения канальных труб из циркония оказалось остаточное внутреннее напряжение в ее стенках. Завод по своей инициативе изменил технологию изготовления канальных труб и результатом этого “технологического новшества” стала авария (ТК 62-44, К.Н.) на реакторе 1-го блока ЧАЭС с деформацией графитовой кладки активной зоны. Выяснение причин аварии было очень полезно и важно для повышения надежности технологических каналов. Проблемы надежности постоянно были в кругу задач разработчиков, материаловедов, конструкторов...»
Два института - два разных заключения. Главный конструктор всю вину сбрасывает на персонал АЭС. На каком основании? Где факты? Гораздо убедительнее выглядит позиция сотрудников института Научного руководителя, где причиной этой аварии называется изменение технологии изготовления труб для технологических каналов РБМК, что убедительно доказала материаловедческая экспертиза, проведенная после аварии ИАЭ и КИЯИ.
Как очевидец этой аварии и участник ликвидации её последствий, могу добавить немногое - версия НИКИЭТа, обвинившего инженера цеха наладки ЧАЭС в полном закрытии подачи воды в канал 62-44 так и осталась версией. И руководитель работ, и вся бригада операторов, занимавшаяся в тот день регулировкой поканальных расходов, от навязываемой им ошибки упорно отбивалась. В тот день они работали как всегда, строго по инструкции, которая обязывала до начала работы ставить на регулятор ограничительную планку, механически препятствующую полному закрытию клапана подачи воды в канал.
Г лава 7
РАБОТА СИСТЕМ ТЕХНОЛОГИЧЕСКОГО КОНТРОЛЯ
Для реактора РБМК-1000 номенклатура и объем измеряемых и контролируемых параметров были определены схемой теплотехнического контроля РБМ-К9 сб.01 ГЗ. В частности, объем измерения температуры металлоконструкций, графита, охлаждающей воды на выходе каналов СУЗ и др. составлял величину порядка 550 точек.
Объем измерений расхода в топливных каналах и каналах СУЗ составлял 1890 точек; энерговыделения (СФКРЭ и СУЗ) - порядка 300 точек;
контроля целостности топливных каналов и каналов СУЗ (КЦТК) - 2044 точек по температуре и 26 групповых точек по влажности газа; контроля герметичности оболочек твэл (КТО) -1661 точку.
В целом объем непосредственно измеряемых параметров имел величину около 4560 аналоговых и 3500 дискретных сигналов. Ряд параметров (например, оперативный запас реактивности, мощность по каждому топливному каналу, паросодержание в нем, коэффициент запаса до кризиса теплообмена, поканальная энерговыработка), непосредственное измерение которых не представлялось возможным, рассчитывались автоматизированной системой централизованного контроля "Скала".
При этом объем оперативно контролируемых параметров возрастал до 16500. Однако некоторые важные для безопасности параметры не рассчитывались и не контролировались вообще (например - линейная нагрузка на твэл, запас до кипения на «всасе» ГЦН и др.).
Большинство первичных преобразователей системы технологического контроля не были разработаны специально под условия эксплуатации РБМК. Полученный опыт монтажа и эксплуатации [73,74] средств измерения и контроля вынудил разработчиков искать новые конструктивные и схемные решения. В частности, датчики измерения расхода в топливных каналах "ШТОРМ-3 2А" были заменены на "ШТОРМ-32М", двух и трехзонные блоки термопар БТ-0170 - на пятизонный ТЭП. По той же причине были введены дополнительная система контроля течи теплоносителя (КТТ), термометрические кассеты. Технологические программы СЦК "Скала" тоже приходилось постоянно модернизировать, поскольку объем и скорость расчета параметров были гораздо ниже эксплуатационных нужд.
Читать дальшеИнтервал:
Закладка: