Анатолий Фоменко - Русь и Рим. Реконструкция Куликовской битвы. Параллели китайской и европейской истории
- Название:Русь и Рим. Реконструкция Куликовской битвы. Параллели китайской и европейской истории
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Анатолий Фоменко - Русь и Рим. Реконструкция Куликовской битвы. Параллели китайской и европейской истории краткое содержание
Принятая сегодня версия русской истории и хронологии не свободна от глубинных ошибок и противоречий. Если мы хотим узнать правду о нашей истории, придется отказаться от множества вбитых нам со школьной скамьи предрассудков.
В первой главе авторы предлагают реконструкцию русской истории и хронологии, основанную на методах Новой хронологии. В совершенно другом свете предстает пресловутое «монголо-татарское иго на Руси», происхождение казачества, история царя Бориса и «самозванца Лжедмитрия», воцарение дома Романовых и множество других ключевых событий русской истории.
Вторая глава посвящена краткому обзору основ китайской хронологии и истории. Читателя здесь ждет много нового и неожиданного.
Книга предназначена для самых широких кругов читателей. Ее чтение не потребует специальных знаний. Необходим лишь интерес к русской и всемирной истории и желание разобраться в ее загадках.
Третье издание, исправленное и дополненное.
Русь и Рим. Реконструкция Куликовской битвы. Параллели китайской и европейской истории - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Скорее всего, несколько наблюдений, «подтверждающих» его «теорию», автор идеи все-таки не нашел. Он был, скажем еще раз, вероятно, не астроном. Такое расхождение теории с практикой – нормальное явление для профессионального астронома – разрушало созданную имкартину гармоничного мира. И тогда он вставил недостающие наблюдения. Или просто нашел какие-то китайскиезаписи и проинтерпретировал их туманные даты и свидетельства так, как ему было нужно. Может быть, из лучшихпобуждений. Автор считал, что он таким образом восстанавливает истинную картину далекого прошлого. А через100—150 лет уже профессиональные астрономы Коуэлл иКроммелин, к своему удивлению, обнаружили эту, лишьнедавно изготовленную, рукотворную «синусоиду» и канонизировали ее, превратив в астрономический «закон природы». Который вскоре – уже в 1910 году – был безжалостно нарушен той же самой природой. А именно кометаГаллея пришла на три с половиной года раньше предсказанного «китайской синусоидой».
О ХАОТИЧНОСТИ ДВИЖЕНИЯ КОМЕТЫ ГАЛЛЕЯ
В 1989 году в журнале «Астрономия и астрофизика» появилась статья Б.В. Чирикова и В.В. Вячеславова, в которойавторы показали, что в движении кометы Галлея существует значительная случайная составляющая. Главный выводиз своего исследования эти авторы сформулировали так: «Показано, что движение кометы Галлея хаотично благодаря возмущениям, вызываемым Юпитером».
Таким образом, модель движения кометы Галлея не является детерминированной, а строится в рамках динамического хаоса. Имеется в виду следующее. Если некотораякомета, как, например, Галлея, имеет сильно вытянутуюорбиту, выходящую за круговую орбиту Юпитера, то каждый раз, возвращаясь назад в Солнечную систему, онавстречает Юпитер в случайной фазе в силу несоизмеримости их периодов обращения. Юпитер, как гигантская планета, дает наибольший вклад в возмущение траекториикометы. Встречая его в случайной фазе, комета подвергается случайному возмущению.
Оказывается, что для комет типа кометы Галлея, описываемого математической моделью, разработанной в статьеЧирикова и Вячеславова, характерна хаотичность динамики. Одним из наиболее чувствительных параметров орбиты кометы является время прохождения через перигелий, то есть время возвращения (период) кометы. В частности, период кометы Галлея – случайная величина с экспоненциально (показательно) нарастающим разбросом. Но «идеальная китайская синусоида» в поведении периода кометы Галлея не могла появиться в результате случайного эксперимента.
Нам скажут: хотя и редко, но чудеса все-таки случаются. Конечно. Например, обезьяна, случайно тыкая в клавиши пишущей машинки, может напечатать, причем без грамматических ошибок, осмысленный текст. Например, романЛ.Н. Толстого. Но вероятность этого события ничтожномала, хотя и не равна нулю. И вероятность появления «китайской синусоиды» в случайной серии экспериментовтоже не нулевая. Но она настолько исчезающе мала, что еюможно смело пренебречь точно так же, как и вероятностью того, что какая-нибудь обезьяна напечатает без пропусков и ошибок все четыре тома романа «Война и мир».
ПОДОЗРИТЕЛЬНО ВЫСОКАЯ ЧАСТОТА МАЛОВЕРОЯТНЫХ СОБЫТИЙ В СКАЛИГЕРОВСКОЙ ИСТОРИИ
Здесь уместно сделать одно общее замечание о маловероятных событиях в истории. И Морозову, и нам приходилось неоднократно слышать следующее возражение. Какодин из примеров, процитируем наиболее квалифицированного оппонента – математика Б.А. Розенфельда, опубликовавшего в 1982 году в сборнике, посвященном Морозову, статью «Математика в трудах Н.А. Морозова». Комментируя обнаруженные Морозовым странные и многочисленныесовпадения в скалигеровской истории: совпадения потоковдлительностей правлений в династиях разных эпох, совпадения астрономических событий и т. д., Розенфельд писал: «Морозов подсчитывал вероятность тех или иных совпадений и, найдя, что эта вероятность чрезвычайно мала, делалвывод о невозможности этих совпадений. Такого рода рассуждения совершенно неправомерны (?), так как теориявероятностей является наукой о массовых, а не о единичных явлениях, и фактически могут происходить события, вероятность которых сколь угодно близка к нулю».
Б.А. Розенфельд прав в своем последнем высказывании. События с очень малой вероятностью действительно происходят. Но если мы хотим, чтобы некое редкое событиепроизошло, нужно предъявить большое количество испытаний – порядка величины, обратной значению вероятности. Поэтому важна не только вероятность события, но иколичество испытаний, в которых оно происходит. Для этого и существует наука – математическая статистика, которая все учитывает. И рассуждения Морозова с точки зрения математической статистики вполне правомерны.
Для неспециалистов в теории вероятности отметим, чточасто выдвигаемое в наш адрес возражение типа предыдущего – «да, это событие маловероятно, но все-таки произошло в силу случайных причин» – не может выдвигатьсяслишком часто. Его можно высказать один раз, два раза, ну – три раза. По конкретному поводу. Но когда оно начинает выдвигаться очень часто и относится не к одному-двум, а к целому классу, серии поразительных совпадений в ска-лигеровской истории, то оно полностью теряет всякийсмысл.
И в случае с кометой Галлея мы, скорее всего, услышимот некоторой части читателей то же возражение: «китайская синусоида» появилась случайно.
Но оно будет всего лишь очередным в длинной цепи подобных возражений. Не слишком ли часто в скалигеровс-кой истории происходят события, вероятность которыхпрактически равна нулю? Каждое такое возражение, взятое в отдельности, имеет смысл. Но когда они выстраиваются в длинный ряд, то последовательность возраженийобессмысливается.
И еще раз подчеркнем важное обстоятельство. Почему «массовые серийные совпадения» в истории начинаютсялишь ранее XVIII века н. э.? Почему их нет в последние 400лет? Что случилось с историей? Почему она вдруг только в последние 400 лет стала подчиняться законам теории вероятностей? А ранее этого времени якобы упорно игнорировала законы математической статистики?
О КОМЕТЕ КАРЛА VХорошую возможность показать, как при помощи китайского кометного списка можно «подтвердить» что угодно, представляет нам знаменитая комета Карла V. Как обэтом пишет Морозов, она появилась в 1556 году, «была изкрупных, и такой же описана она у китайцев. А за 292 годадо нее в 1264 году была такая же большая комета, передсмертью папы Урбана… Она же описана в «Лето-Записи» (Ше-Ке), и Пенгрэ по ней нашел, что ее орбита очень близка к орбите кометы Карла V… Он счел обе кометы за ту жесамую комету, имеющую период возвращения к Солнцуоколо 292 лет. По этой теории ее приходилось искать еще ив 972, и в 680, и в 388, и в 96 году нашей эры».
Читать дальшеИнтервал:
Закладка: