Александр Бабакин - Битва в ионосфере
- Название:Битва в ионосфере
- Автор:
- Жанр:
- Издательство:Цейхгауз
- Год:2008
- Город:Moscow
- ISBN:978-5-9771-0091-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Бабакин - Битва в ионосфере краткое содержание
Битва в ионосфере - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Поученные результаты по натурным экспериментам, а также при проведении моделирования позволили, в конечном счете, с достаточной достоверностью оценить ТТХ созданных узлов ЗГРЛС по обнаружению запусков БР с территории США. Не останавливаясь на деталях и частностях, здесь мы отметим лишь несколько, на наш взгляд, наиболее важных результатов:
1. Оба боевых узла трудно использовать в СПРН с целью обнаружения одиночных и групповых стартов БР.
2. По своим ГФУ и РФУ чернобыльский узел хуже восточной РАС, так как часть трассы распространения радиоволн проходит через субполярную ионосферу.
3. Боевой узел в г. Комсомольске-на-Амуре может быть достаточно надежно использован в СПРН в качестве независимого от всех остальных средств системы источника информации о массовом налете БР. В этом плане физические и технические принципы, положенные в основу разработки ЗГРЛС, следует признать оправдавшими себя. В ряде случаев будет наблюдаться ухудшение некоторых ТТХ узла из-за состояния ионосферы по трассе распространения КВ-радиоволн, которая в целом характеризуется как среднеширотная».
«Исследования искусственно модифицированной ионосферы на комплексе загоризонтной радиолокации в г. Николаеве».
В. А. Алебастров, д.ф.-м.н., директор Украинскогорадиофизического института
A.M. Куликов, руководитель группы Украинского
радиофизического института
Ю.А. Романовский, к.ф.-м.н., старший научный сотрудник,
зав. отд. Института прикладной геофизики
имени академика Е.К. Федорова
«В настоящее время для исследований и мониторинга ионосферы используется широкий круг радиофизических методов, основанных на взаимодействии КВ-УКВ излучений с ионосферной плазмой. К наиболее распространенным методам относятся методы вертикального и наклонного КВ-зондирования, реализованные в аппаратурных комплексах ионосферных станций, с помощью которых получен основной объем имеющихся данных о состоянии и регулярных вариациях ионосферы. Возможности этих исследований существенно ограничиваются невысокими техническими характеристиками этих средств.
В то же время, в последние годы возникла необходимость изучения нестационарных процессов в ионосфере, тонкой структуры ионосферной плазмы, локальных неоднородных образований и других явлений и процессов, которые не могут быть исследованы в полной мере с помощью указанных комплексов. Это, в частности, относится к исследованиям искусственно модифицированной ионосферы, свойства и характеристики которой могут существенно изменяться при воздействии мощного радиоизлучения, запусков изделий ракетно-космической техники, при проведении в ионосфере экспериментов активного типа и др.
Эффективным средством для осуществления исследований нестационарных локальных явлений и образований в естественной и искусственно модифицированной ионосфере могут быть станции загоризонтной радиолокации (ЗГРЛС), обладающие мощным потенциалом и высокими характеристиками системы приема и обработки сигнала. Это, в частности, было убедительно продемонстрировано при проведении с помощью ЗГРЛС в г. Николаеве исследований ионосферы в естественных условиях, а также при воздействии мощного КВ-радиоизлучения и мощных наземных взрывов.
Авторами и их коллегами в период 1987-90 г.г. с использованием указанной ЗГРЛС была выполнена программа исследований модифицированной ионосферы при создании искусственных плазменных образований (ИПО). Метод ИПО широко используется для изучения динамических и плазменных процессов в ионосфере. В основном ИПО применяются в качестве трассеров процессов в ионосфере при наблюдениях оптическими методами. При этом теряется значительная часть информации об особенностях изменений ионосферы, вызванных созданием ИПО, и процессах в ионосфере и в самом ИПО, не наблюдаемых оптическими методами. Зондирование ионосферы и ИПО с помощью ЗГРЛС позволяло получать дополнительную информацию о модификации ионосферы.
Основные задачи программы исследований состояли в следующем:
— анализ спектрально-энергетических характеристик сигналов обратного рассеяния (СОР) и сигналов возвратно-наклонного зондирования (ВНЗ);
— изучение по измерениям СОР и ВНЗ структуры и динамики ИПО на разных высотах и при различных способах их создания;
— исследования взаимодействия ИПО с ионосферой;
— изучение особенностей взаимодействия мощного КВ-излучения с «сильными» плазменными неоднородностями;
— анализ эффективности диагностики и контроля методами КВ-зондирования искусственной модификации ионосферы.
В программе экспериментов осуществлялись комплексные исследования ИПО, которые проводились с использованием бортовых измерительных средств, обеспечивающих прямые измерения параметров ИПО, а также с привлечением наземных оптических и радиофизических измерительных комплексов. В экспериментах ИПО создавались с помощью пиротехнических генераторов и плазменных ускорителей стационарного и импульсного типа, которые устанавливались на метеорологических ракетах MP-12 и МР-20, запускавшихся с полигона Капустин Яр и с борта научно-исследовательского судна в Норвежском море.
В активных экспериментах, образование ИПО производилось на высотах 130–180 км. При применении пиротехнических генераторов создавались крупномасштабные ИПО — т. н. искусственные ионные облака — с размерами от сотен метров на начальной стадии до десятка километров на заключительной фазе их образования. При использовании стационарных плазменных ускорителей при инжекции плазмы с борта ракеты образовывалось протяженное ИПО вдоль траектории ракеты. В ряде экспериментов для изучения особенностей взаимодействия мощного КВ-радиоизлучения с ИПО на ракете устанавливалось радиоприемное устройство, которое регистрировало излучение станции. В этом случае предусматривалось непрерывное излучение станции на одной из частот.
Особенности характеристик СОР при зондировании искусственных облаков на расстоянии — 1100 км от РЛС в зоне прямой видимости иллюстрируются данными эксперимента с созданием с помощью пиротехнического генератора одного ионного облака, в котором было создано 5 облаков вдоль траектории ракеты. Как следует из этих данных, о возникновении ИПО свидетельствует значительное на 40–50 дб возрастание амплитуды сигнала СОР, причем увеличенные значения СОР регистрируются в течение более 30 минут. Верхнюю временную границу регистрации ИПО определить не удалось из-за преждевременного прекращения зондирования на станции. Амплитудные вариации СОР характеризуются регулярными периодическими замираниями на 10–20 дб, свидетельствующими об изменениях структуры ИПО. Распад облака на множество мелких неоднородностей и его расслоение, обычно хорошо наблюдаемое по данным оптических наблюдений при локации ИПО, на ЗГРЛС проявляется в возникновении квазишумового характера СОР. При образовании в эксперименте нескольких ионных облаков создание каждого облака сопровождается возрастанием амплитуды СОР. Затем происходит уменьшение СОР на ~ 20 дб и этот уровень сигнала поддерживается в течение нескольких десятков минут.
Читать дальшеИнтервал:
Закладка: