Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая

Тут можно читать онлайн Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство ОГИЗ, год 1938. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая
  • Автор:
  • Жанр:
  • Издательство:
    ОГИЗ
  • Год:
    1938
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая краткое содержание

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - описание и краткое содержание, автор Эрнест Лависс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - читать онлайн бесплатно полную версию (весь текст целиком)

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - читать книгу онлайн бесплатно, автор Эрнест Лависс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Зато Брюссельская академия [60] Данделен (1794–1847), бывший воспитанник Политехнической школы и офицер, и профессор Кетле популяризировали в Бельгии исследования в области чистой геометрии. открыла двери этой науке, добившейся здесь полного торжества. Две записки Мишеля Шаля (1793–1880), представленные в декабре 1829 года и весьма полно обработанные для напечатания, закончились знаменитым Историческим очерком (Apergu historiqueJ, за которым последовала Записка о двух общих принципах науки — двойственности и гомографии (Memoire sur deux principes generaux de la science, la dualite et la homographie, 1837), имевшая громадный успех. Шаль, который по окончании Политехнической школы в 1814 году в течение 10 лет состоял биржевым маклером, с 1828 года всецело отдался науке и выдвинулся многочисленными статьями, напечатанными в Journal de YEcole poly technique, в Annales mathematiques Жергона [61] Жергон (1771–1859), профессор астрономии в Монпелье, основал в 1810 году этот журнал, который издавал до 1831 года. Ему мы обязаны введением термина «двойственность» и прямым установлением этого принципа. и в Correspondance Кетле. В 1841 году он получил кафедру геодезии и теории машин в Политехнической школе, в 1846— кафедру геометрии в Сорбонне, но ему суждено было войти в Академию только в 1851 году. Его карьера этим далеко не закончилась, и он был одним из немногих математиков, до самой старости сохранивших гениальную способность к открытиям.

Между тем Германия, где математические традиции свили себе не такое прочное гнездо, как во Франции, с жаром устремилась на новый путь.

Пруссак Мебиус (1790–1868), ученик Гаусса, с 1815 года профессор в Лейпциге, в 1827 году обнародовал свое Барицентрическое исчисление (Бег barycentrische CalculJ и напечатал множество трудов в Журнале Крелле (Journal fur die reine und angewandte Mathematik), основанном в Берлине в 1826 году. Главной заслугой Мебиуса является исследование новых логарифмов, усовершенствование системы обозначений, употребляемых для упрощения геометрических рассуждений и вычислений. Он же первый предложил ввести в употребление новые системы координат.

Якоб Штейнер (1786–1863), родившийся в Бернском кантоне, поселившийся в Берлине и подружившийся с Крелле, издал в 1832 году свое Систематическое развитие зависимых геометрических образов друг от друга (Systematische Ent-wicklung der Abhdngigkeit geometrischer Gestalten voneinander), которое вместе с Геометрией положения Штаудта (1847) [62] Христиан фон Штаудт (1798–1867), родившийся в Вюртемберге, профессор в Эрлангене, пытался обосновать под названием «геометрии положения» науку, независимую от каких бы то ни было метрических отношений. Труд его, крайне сжатый, долгое время не вызывал к себе должного внимания. Мы поговорим о нем в следующем томе. составляет основу синтетической геометрии в ее нынешней форме. В 1834 году для Штейнера в Берлине создали новую кафедру, которой он стяжал громкую славу. Открытия Штейнера относительно свойств кривых и поверхностей высших порядков так быстро следовали одно за другим, что он нередко помещал их без доказательств в Журнале Крелле, где они долгое время составляли проблемы для исследователей. Штейнер словно ненавидел анализ и старался привести его в такое состояние, чтобы развитие его мыслей нельзя было проследить. В некоторых случаях, по признанию Гессе, ему это удавалось. Имя Штейнера по справедливости связывается с двадцатью семью прямыми и характеристическим пентаэдром, принадлежащим к поверхностям третьего порядка.

Heэвклидовы системы: Лобачевский, Болиай.На арену научной мысли вступают славяне и венгры, дебют которых отмечен необычайной смелостью.

Как известно, Эвклид принимал без доказательств то, что в плоскости через точку можно провести только одну прямую, которая, сколько бы ее ни продолжали, не встретит другой данной прямой. Этот постулат, еще в древности бывший объектом многочисленных попыток доказательства, так и остался камнем преткновения. Но очень немногим геометрам приходила в голову мысль попробовать вывести следствия из противоположной гипотезы, по которой через данную точку можно провести, не встречая данной прямой, бесконечное множество прямых, заключенных в угле, величина которого зависела бы (по особому закону, который надлежит определить) от расстояния точки от данной прямой [63] Позднее писали об иезуите Саккери из Милана (1733) и Ламберте, который в статье, напечатанной в Лейпциге в 1786 г., пошел довольно далеко в этом направлении. Гаусс, со своей стороны, пришел к тем же результатам, что и Иоганн Болиай; именно ему принадлежит термин «неэвклидовой» геометрии. .

Лобачевский (1793–1856), казанский профессор, изложил в 1829 году свои взгляды в очерке, а в 1836–1838 годах обнародовал свои Новые начала в геометрии с полной теорией параллельных, где он развил в ясной и точной форме гипотезу, обратную эвклидову постулату. Его сочинения, написанные по-русски, долго оставались неизвестны за границей, и краткое резюме его Воображаемой геометрии, которое он напечатал в Берлине в 1840 году, также прошло незамеченным.

Трансильванец Вольфганг Болиай (1775–1856) учился в Германии и был соучеником Гаусса. Занимая кафедру в Марош-Ва-шаргели в течение 47 лет, он составил себе репутацию сколь оригинального, столь же и скромного ученого. Главное его сочинение Tentamen (1832–1833) снабжено прибавлением в 26 страниц, озаглавленным Абсолютная наука о пространстве и принадлежащим его сыну Иоганну Болиай (1802–1860). В этом-то прибавлении и содержатся в сжатом виде ввшоды, вытекающие из отказа от эвклидовой гипотезы, развитой до своих аналитических следствий, из коих ясно видна невозможность найти какое-нибудь противоречие в результате этого отказа.

Из этих работ вытекало не только то, что постулат Эвклида недоказуем, но что он даже имеет характер гипотезы, а не необходимой a priori истины. Этому выводу большой философской важности предстояло позже быть распространенным на аксиомы, составляющие отправную точку геометрии, а вследствие этого глубоко изменить воззрения математиков на роль их науки.

Аналитическая геометрия: Плюкер, Гессе.Чтобы удержаться на высоте, достигнутой синтетической геометрией, необходимо было преобразовать, в свою очередь, и аналитическую геометрию. Наибольшее влияние в этом смысле оказал на последнюю Юлиус Плюкер (1801–1868), родившийся в Эль-берфельде. Состоя до 1846 года профессором физики в Бонне, он тем не менее занимался и чистой математикой. В 1828 и 1831 годах он издает свои два тома Аналитико-геометричесшх исследований (Analytisch-geometrische EntwiMungen), где впервые излагается система однородных координат (по существу тождественная с системой Мебиуса); в 1834 году Плюкер издает свою Систему аналитической геометрии, заключающую в себе полную классификацию кривых третьего порядка; в 1839 году — свою Теорию алгебраических кривых (Theorie der algebraischen Kurven), в которой перечисляются кривые четвертого порядка и даны аналитические соотношения, связывающие особые точки плоских кривых. «ЭтиуравненияПлю-кера, — говорит Кэйли, — бесспорно составляют важнейшее открытие во всей современной геометрии». Но если труды Плю-кера были оценены по достоинству в Англии и Франции, то этого нельзя сказать про Германию, где он не удостоился благосклонности берлинских ученых. Штейнер даже заявил, что перестанет сотрудничать в Журнале Крелле, если там будут продолжать печатать труды Плюкера. Вдобавок, как профессора физики, его упрекали в том, что он пренебрегает своей наукой. Копчилось тем, что Плюкер оставил свои занятия по аналитической геометрии и в течение 15 лет с лишним работал в области математической физики, которую сильно двинул вперед. Позже он с блестящим успехом продолжал свои любимые исследования.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрнест Лависс читать все книги автора по порядку

Эрнест Лависс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая отзывы


Отзывы читателей о книге Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая, автор: Эрнест Лависс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x