Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая

Тут можно читать онлайн Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - бесплатно полную версию книги (целиком) без сокращений. Жанр: История, издательство ОГИЗ, год 1938. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая
  • Автор:
  • Жанр:
  • Издательство:
    ОГИЗ
  • Год:
    1938
  • Город:
    Москва
  • ISBN:
    нет данных
  • Рейтинг:
    3.4/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая краткое содержание

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - описание и краткое содержание, автор Эрнест Лависс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - читать онлайн бесплатно полную версию (весь текст целиком)

Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - читать книгу онлайн бесплатно, автор Эрнест Лависс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Коши, поступив в 1807 году из Политехнической школы в Корпус путей сообщения, с 1813 года посвятил себя исключительно науке; в 1816 году он вступил в Академию, присудившую ему высшую награду (grand prix), в то же время он преподает механику в Политехнической школе, высшую алгебру — в Сорбонне, математическую физику — в College de France. Горячий легитимист, он отказывается присягнуть Июльскому правительству, покидает Францию в 1831 году, профессорствует два года в Турине, затем отдается научному воспитанию герцога Бордосского. В 1838 году он возвратился в Академию, но кафедру получил снова только в 1848 году.

Коши, кроме своих дидактических сочинений, представляющих образец в смысле точности изложения, оставил свыше 800 мемуаров по всем отделам математики. Сравнительно доступный для чтения, этот плодовитый автор пользовался огромным влиянием, способствовавшим систематизации науки не менее, чем ее прогрессу. Обобщающий ум Коши умел отыскать истинно ценные черты в открытиях, сделанных другими; что касается того, что принадлежит собственно ему, то я ограничусь лишь указаниями на то, что составляло предмет его важнейших исследований.

Прежде всего вопрос о том, может ли функция допускать интегрирование; точное установление понятия определенного интеграла; обоснование теории несобственных интегралов, создание счисления индексов, понятие об определенном интеграле между мнимыми пределами — этим исчерпывается поле исследований Коши.

Относительно диференциальных уравнений, обыкновенных и с частными производными, Коши доказал существование решений и выработал для них общие методы; кроме того, точно определил условия разложения функций в бесконечные ряды.

В чистой алгебре Коши ввел понятие о детерминантах; по теории чисел он доказал одно из труднейших предложений Фермата; в области математической физики он заложил основы упругости и первый объяснил явление светорассеяния.

Теория функций: Абель, Якоби.Теоретическое значение работ Коши о функциях не могло быть, однако, оценено надлежащим образом до фактического появления новых функций. В течение 40 почти лет Лежандр (1752–1833), занявшись этим вопросом в том пункте, на котором его оставил Эйлер, один разрабатывал эту отрасль анализа. В его Интегральном исчислении (1811–1816—1817) излагаются наряду с частью исследований об эллиптических функциях также изыскания, произведенные им относительно двух классов определенных интегралов, которые он назвал эйлеровыми. В 1825–1826 годах он собрал воедино все данные об эллиптических функциях, к открытию которых привело исследование интеграла квадратного корня из многочлена четвертой степени [64] В 1830 году Лежандр собрал воедино свои труды по Теории чисел. .

В том же 1826 году в Париж приехал на 10 месяцев молодой норвежец Нильс-Генрих Абель (1802–1829), только что перед тем напечатавший в первом томе Журнала Крелле доказательство невозможности разрешить в радикалах общее уравнение пятой степени. Ему пришла в голову гениальная мысль об обращении эллиптических функций, а также и об использовании здесь мнимых величин. Открытия, к которым он таким образом пришел, почти тотчас побудили его заняться рассмотрением гораздо более обширного класса трансцендентальных функций (ныне называемых абелевскими), и он представил в Академию наук Записку об одном общем свойстве этих функций. Эта капитальная работа была послана на рассмотрение Коши; целиком поглощенный своими трудами, последний держал ее у себя, не читая [65] Записка была напечатана Академией только в 1841 году; во время печатания Либри, которому был поручен надзор за печатанием, повидимому, утаил рукопись, так как она пропала. Абелевские функции суть интегралы иррациональной функции, связанной с независимой переменной посредством алгебраического уравнения. .

Будучи слишком скромен в самооценке и не найдя достаточной поддержки в старике Лежандре, несмотря на всю его благосклонность, Абель, обескураженный, оставил Париж; пробыв недолгое время в Берлине, он вернулся в Норвегию в самом плачевном состоянии и скончался от чахотки в то самое время, когда труды его, напечатанные Крелле, стали возбуждать восхищение математиков.

Почти одновременно с Абелем и независимо от него Карл-Густав-Яков Якоби (1804–1851), уроженец Потсдама, кенигсбергский профессор с 1827 года, пришел путем изучения трудов Лежандра к тем же идеям об эллиптических функциях. Напечатав в соревновании с Абелем различные записки в Журнале Крелле, он опубликовал в 1829 году свои Funda-menta Nova, в течение долгого времени считавшиеся капитальнейшим трудом по этому вопросу. В 1832 году он напечатал весьма ценное исследование о гиперэллиптических функциях, которое также должно быть поставлено рядом с работами Абеля в этой области.

Теория чисел: Лежён-Дирикле.В то время как аналитикам открывались все эти новые пути, путь, указанный Ферма за }гва столетия перед тем, вечно ставил им досадные-задачи, особенно же те, которые касаются невозможности разрешения некоторых неопределенных уравнений. Эйлер и Лагранж только доказали для случая п = 3 или п = 4, что уравнение х 11 — f у п = з п не может быть решено в целых числах, если п больше 2, подобно тому как это разъяснил Ферма.

В 1825 году двадцатилетний студент Лежён-Дирикле, родившийся в Дюрене, при содействии Лежандра представил в Академию доказательство невозможности случая, когда п — 5. Это был первый дебют математика, который в 1827 году стал профессором в Бреславле, в 1833 в Берлине, а в 1855 сменил Гаусса в Гёттингене. Его Лекции по теории чисел вполне оправдали надежды, вызванные его блестящим bbi-ступлением на научном поприще, той ясностью и простотой, которую он умел придать изложению прежних исследований, а также и своих открытий.

Механика: Пуансо, Пуассон, Ламе.В области прикладной математики первенство французских ученых в этот период проявляется еще заметнее, чем в сфере чистого знания. Пуансо (1779–1859), вступив в Академию в 1813 году, напечатал в 1825 году исследование о Геометрии положения, а в 1834 году обнародовал свою Новую теорию вращения тел; оперируя понятием эллипсоида инерции, совокупно с понятием о парах, он сумел получить геометрическое решение капитальной проблемы динамики. Пренебрегая анализом, питая любовь только к геометрической простоте, этот гениальный ученый, к сожалению, был слишком беспечен и не старался умножить число доказательств мощи своего духа. Зато Пуассон (1781–1840), профессор анализа в Политехнической школе, с 1816 года профессор механики в Сорбонне, был плодовитым автором по вопросам анализа; он написал СЕыше 300 работ; он продолжал развивать лапласов метод приложения анализа к явлениям природы. В известном отношении некоторые его труды по математической физике, правда, уже устарели, но другие сохраняют свою ценность и оправдывают репутацию ученого, которого современники ставили на одну доску с Коши.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Эрнест Лависс читать все книги автора по порядку

Эрнест Лависс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая отзывы


Отзывы читателей о книге Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая, автор: Эрнест Лависс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x