Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая
- Название:Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая
- Автор:
- Жанр:
- Издательство:ОГИЗ
- Год:1938
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Эрнест Лависс - Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая краткое содержание
Том 4. Время реакции и конситуционные монархии. 1815-1847. Часть вторая - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Гессе, родившийся в Кенигсберге (1811–1874), профессорствовал там до 1855 года и там же издал свои оригинальные исследования, направленные главным образом на изучение кривых третьего порядка и применение детерминантов к исключению неизвестных. В частности, под именем Гессиан известен детерминант, позволивший ему при помощи линейных подстановок свести к четырем членам общую форму уравнения третьей степени. В это же время английская школа, насчитывавшая в своих рядах Салмона, Кэйли, Сильвестра, с блестящим успехом вступила на тот же путь. В следующем томе нам еще встретятся эти имена.
Наконец, отметим появившиеся в этот период два труда Гаусса — Общие исследования о кривых поверхностях (Disqui-sitiones generates circa superficies curvas, 1827) и Исследования no вопросам высшей геодезии (Untersuchungen uber Gegenstande der hoheren Geodasie, 1843 и 1846), сделавшиеся классическими источниками по вопросу о кривизне поверхностей.
Алгебра: Гамильтон, Грассман, Галуа.Одновременно с изменениями в области геометрии, не менее глубокие преобразования подготовляются и в алгебре; новые идеи, столь же парадоксальные с первого взгляда, как и неэвклидовы, не встречают, правда, вначале благосклонного приема, но в будущем торжество им обеспечено.
Отправной точкой здесь является наглядная трактовка концепции мнимых величин. Принятые еще при Декарте, но в качестве чистой алгебраической фикции, они не получили, подобно так называемым отрицательным величинам, непосредственного естественного истолкования, и потому считалось, что им ничто не соответствует в действительности. Замечательный Опыт (1806) женевца Аргана остался почти столь же незамеченным, как и попытки профессора Кюна из Данцига (1750–1751) и датского землемера Каспара Весселя (1799). На долю Гаусса выпало ввести символ х — f iy для обозначения «комплексного числа», с помощью которого условно можно представить, посредством комбинации двух координат, изменение положения точки на всем протяжении плоскости, тогда как «обыкновенное число» (вещественное число) может представить это изменение только на одной линии. Сколь бы искусственной ни казалась эта условность, она привела, благодаря приложению алгебры и геометрии, к поразительному расширению понятий об элементарных действиях. Возьмем, например, простейший случай: если мы начнем от какой-нибудь вершины в определенном направлении последовательно обходить все стороны какого-либо многоугольника, кроме одной, то эта последняя сторона, если мы пройдем ее от той же вершины, может в известном смысле рассматриваться как сумма всех остальных, если учитывать одновременно как длину, так и направление каждой из них. Таким образом, пришли к мысли, что элементарные действия способны получать гораздо более общие определения, и даже такие, в зависимости от которых могут видоизмениться правила алгебраического вычисления.
В Англии блестящим защитником идей такого рода явился Август де Морган (1806–1871), профессор Лондонского университета (1828–1867); но он занимался главным образом вопросами чистой логики. Вильям-Роуан Гамильтон (1805–1865), родившийся в шотландской семье в Дублине, где он преподавал в Коллегии св. троицы с 1827 года, изобрел новое исчисление.
В течение восьми лет его занимала мысль — найти для пространства трех измерений символическое отображение, аналогичное тому, которое мнимые числа дают для плоскости; и вот вечером 16 октября 1843 года, когда он прогуливался с женой по берегу Королевского канала в Дублине, решение задачи блеснуло в его уме, и он выгравировал перочинным ножом на камне моста Врума следующие основные формулы: г 2 = j* — k 2 = ijk =—1. Спустя месяц он сделал в Ирландской королевской академии первое сообщение о кватернионах. Его Лекции (LecturesJ изданы в 1852 году; Элементы (Elements) — в 1866 году.
Герман Грассман (1809–1877), уроженец Штеттина, где он был профессором с 1836 года, в 1844 году, когда издана была первая часть его Линейного учения о протяжении (Lineale Ausdehnungslehre), предвосхитил открытие Гамильтона, установив начала еще более общей и плодотворной теории, не ограниченной определенным числом измерений. К сожалению, его своеобразная терминология и парадоксальная форма изложения оттолкнули даже Гаусса и Мебиуса, ив 1852 году нашелся, кажется, только один математик — Бретшнейдер из Готы, — который прочитал сочинение Грассмана от начала до конца Грассман не мог получить кафедры в университете и направил свою деятельность в другую сферу. Хотя он и издал в 1862 году вторую часть своего Учения о протяжении (Ausdehnungslehre J, но уже с этих пор занимался исключительно филологией, особенно ревностно отдаваясь изучению санскрита; высокая ценность его трудов в этой области была очень скоро признана.
В Италии Юлий Веллавитис (1803–1886) опубликовал в 1835–1837 свое исчисление эквиполенций.
Во Франции великий математик этой эпохи Огюстэн Копти (1789–1857) не давал алгебре уклоняться в сторону, но тем не менее умел двигать ее вперед столь же быстрыми, сколь и верными шагами. В общем, благодаря его трудам понятие о мнимых величинах Гаусса и Аргана окончательно утвердилось, и необходимость учения о мнимых величинах была признана всеми математиками; его «алгебраические ключи» отвечают одной из основных идей Грассмана.
20 мая 1832 года прискорбная дуэль лишила Францию молодого математика, в котором еще на скамье Нормальной школы обнаруживался первоклассный гений. Имя Эвариста Галуа (1811–1832) навсегда останется связанным с понятием о группах подстановок, являющихся отправной точкой одной из важнейших современных теорий; он ввел это понятие для определения условий, при которых алгебраическое уравнение может быть разрешено в радикалах.
В 1829 году Штурм (1803–1855), уроженец Женевы, которому суждено было заменить в Сорбонне Пуассона на кафедре механики, выдвинулся знаменитой теоремой, касающейся определения числа действительных корней алгебраического уравнения, заключенных между двумя данными пределами.
Анализ: Фурье, Коши. Несмотря на выступление на сцену иностранных новаторов, французская школа пользовалась попрежнему неоспоримым авторитетом. Парижская Академия наук никогда не находилась в более цветущем состоянии; по общему признанию, она шла во главе умственного движения, и ее математики с достоинством поддерживали ее репутацию.
Жозеф Фурье (1768–1830) в 1807 году опубликовал свое капитальное открытие, что произвольная функция может быть представлена тригонометрическим рядом. Воспитанник Нормальной школы (1795), некоторое время профессор Политехнической школы, взятый Бонапартом в Египет, где он состоял секретарем Института, затем префект Гренобля в течение 14 лет, он вступил в 1817 году в Академию в качестве физика и в 1822 году издал свою Аналитическую теорию теплоты, в которой его «ряды» находят себе блестящее приложение и которая отмечает собою решающий момент в истории математической физики.
Читать дальшеИнтервал:
Закладка: