Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним

Тут можно читать онлайн Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним - бесплатно ознакомительный отрывок. Жанр: Математика, издательство Литагент Corpus, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Эта странная математика. На краю бесконечности и за ним
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2021
  • Город:
    Москва
  • ISBN:
    978-5-17-119879-4
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание

Эта странная математика. На краю бесконечности и за ним - описание и краткое содержание, автор Агниджо Банерджи, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр. А главное – все это оказывается неразрывно связанным с нашей повседневной жизнью. Отличная книга для всех, кто интересуется наукой, ведь математика – «основа окружающего нас физического мира, его невидимая инфраструктура».
В формате PDF A4 сохранен издательский макет.

Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок

Эта странная математика. На краю бесконечности и за ним - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Агниджо Банерджи
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похоже, нет ничего определенного в зазеркальном мире сверхмалого. То, что мы считали крохотными твердыми частицами, – электроны и им подобные – растворились, превратившись в волны, причем даже не в материальные, а в волны вероятности. Про электрон уже нельзя сказать точно, здесь он или там, а только что он скорее здесь, чем там, – ведь его движением руководит математическая конструкция под названием “волновая функция”.

Все, что нам осталось, – это вероятность, да и с той нет полной ясности. Существует несколько интерпретаций. Самое распространенное толкование – частотное. Согласно ему, вероятность наступления события – это предел (то есть значение, к которому нечто стремится) относительной частоты наступления события. Чтобы определить вероятность события, “фреквентист [13] От англ. frequency – “частота”. ” должен многократно повторять эксперимент и смотреть, сколько раз произошло нужное событие. Например, если оно происходит в 70 % случаев, значит, его вероятность 70 %. В случае с идеализированной математической монетой вероятность выпадения орла составляет ровно S, поскольку чем больше монету подбрасываешь, тем больше частота выпадения орла стремится к S. У реальной, физической монеты эта вероятность будет другой, не ровно S. Причин тому несколько. Частично влияет на результат аэродинамика броска и то, что “орел” у большинства монет тяжелее, чем выбитый на другой стороне рисунок. Имеет значение также, какой стороной вверх монету подбрасывают: вероятность, что она упадет той же стороной вверх, равна примерно 51 %, поскольку при обычном броске шансы перевернуться в воздухе четное количество раз у нее чуть выше. Но, рассматривая математическую, идеальную монету, все эти факторы можно смело игнорировать.

Говоря о вероятности какого-либо события, “фреквентисты” имеют в виду шансы его наступления при многократном повторении одного и того же эксперимента. Но бывают случаи, когда такая стратегия бесполезна, например когда речь идет о событии, которое может произойти только один раз. Альтернативой тогда служит байесовский метод, названный так в честь английского ученого-статистика XVIII века Томаса Байеса. Расчет вероятности этим методом основан на степени нашей уверенности в определенном результате, то есть вероятность рассматривается как субъективное понятие. Например, если синоптик в прогнозе погоды говорит о “70-процентной вероятности осадков”, по сути это означает, что он на 70 % уверен, что пойдет дождь. Основная разница между частотной и байесовской вероятностью в том, что синоптик не может “повторить” погодный эксперимент – ему нужно оценить вероятность дождя в одном конкретном случае, а не выдать результаты многократно поставленных опытов. Для прогнозирования могут использоваться гигантские массивы данных, в том числе информация о похожих ситуациях, но ни в одной из них условия не будут абсолютно идентичными, так что синоптики вынуждены строить прогнозы исходя из байесовской вероятности, а не из частотной.

Особенно интересно различия между байесовским и частотным подходами проявляются, когда их применяют к математическим понятиям. К примеру, спросим себя, является ли септиллионным знаком числа пи (на сегодня неизвестным) пятерка? Заранее знать ответ невозможно, но после того, как он будет вычислен, он уже никогда не изменится: сколько ни повторяй расчет числа пи, ответ будет всегда один и тот же. Если следовать частотной интерпретации, вероятность того, что септиллионный знак будет пятеркой, равна либо 1 (достоверное событие), либо 0 (невозможное) – другими словами, это или пятерка, или нет. Допустим, доказано, что число пи нормально, то есть мы точно знаем, что в составляющей его бесконечной цепочке знаков каждая из десяти цифр имеет одинаковую плотность распределения. Согласно байесовской интерпретации, отражающей нашу степень уверенности в том, что септиллионным знаком является именно пятерка, вероятность этого – 0,1 (ведь если число пи нормально, то любой его знак, пока он не вычислен, может с одинаковой вероятностью быть любой цифрой от 0 до 9). Но вот после того, как мы этот знак вычислим (если такое когда-нибудь произойдет), вероятность уже точно будет либо 1, либо 0. Фактическое значение септиллионного знака пи нисколько не поменяется, но вероятность того, что это пятерка, изменится – именно потому, что у нас будет больше информации. Информация играет определяющую роль в байесовском подходе: по мере повышения собственной информированности мы можем корректировать значение вероятности, делая его точнее. А при наличии полной информации (скажем, когда определенный знак числа пи вычислен) значения частотной и байесовской вероятности становятся одинаковыми – если мы возьмемся заново рассчитать уже вычисленный знак пи, ответ нам будет известен заранее. Зная все нюансы физической системы (в том числе некоторый элемент случайности, как, например, при распаде атомов радия), мы можем в точности повторить эксперимент и получить частотную вероятность, идеально совпадающую с байесовской.

И хотя байесовский подход кажется субъективным, он может быть строгим в абстрактном смысле. Предположим, у вас есть несимметричная монета: вероятность выпадения орла при ее подбрасывании может равняться какому угодно значению от 0 до 100 %, причем любое из них равновозможно. Бросаем ее первый раз – выпадает орел. Используя байесовскую интерпретацию, можно доказать, что вероятность выпадения орла при втором броске составляет ⅔. Но ведь начальная вероятность выпадения орла была ½, а монету мы не меняли. Байесовский подход позволяет рассуждать так: выпадение первого орла, конечно, не влияет напрямую на вероятность его выпадения при втором броске, но этот факт дает нам дополнительную информацию о монете, а с помощью этой информации мы уточняем свою оценку. Если монета сильно несимметрична в пользу решки, вероятность выпадения орла очень мала, а если сильно несимметрична в пользу орла, то вероятность его выпадения гораздо выше.

Байесовский подход также помогает избежать парадокса, впервые сформулированного в 1940-х годах немецким ученым-логиком Карлом Гемпелем. Когда люди видят, что один и тот же принцип (скажем, закон гравитации) исправно действует в течение долгого времени, они склонны делать вывод, что он с очень высокой вероятностью верен. Это так называемое индуктивное умозаключение, которое можно коротко сформулировать так: если наблюдаемое соответствует теории, то вероятность того, что эта теория верна, увеличивается. С помощью описанного им парадокса воронов Гемпель продемонстрировал, в чем слабое место индуктивной логики.

Все во́роны черные, гласит теория. Каждый раз, когда мы видим ворона черного, а не какого-нибудь другого цвета (существование воронов-альбиносов при этом игнорируем!), наша уверенность в верности теории “все вороны черные” растет. Но вот в чем загвоздка: утверждение “все вороны черные” логически эквивалентно утверждению “все, что не черное, – не вороны”. Поэтому, увидев желтый банан – нечерный объект, не являющийся к тому же вороном, – мы должны были бы еще больше укрепиться в своем убеждении, что все вороны черные. Пытаясь обойти этот в высшей степени контринтуитивный результат, некоторые философы настаивают на том, что нельзя считать оба утверждения имеющими равную силу. Другими словами, желтизна бананов должна убеждать нас только в верности теории, что все нечерное – не вороны (второе утверждение), но никак не в том, что все вороны черные (первое утверждение). Это вполне соответствует здравому смыслу: банан – не ворон, поэтому, смотря на него, мы можем узнать что-то о том, что вороном не является, но никак не о самих воронах. Однако это предложение подвергли критике на том основании, что нельзя быть в разной степени уверенным в верности двух логически эквивалентных утверждений, если совершенно ясно, что они либо оба истинны, либо оба ложны. Возможно, просто наша интуиция в этом вопросе нас подводит и вид желтого банана действительно должен еще больше убеждать нас в черноте всех воронов. А вот если рассматривать проблему с байесовской точки зрения, никакого парадокса не возникает. Согласно Байесу, вероятность гипотезы Г следует умножить на следующее отношение:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Агниджо Банерджи читать все книги автора по порядку

Агниджо Банерджи - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Эта странная математика. На краю бесконечности и за ним отзывы


Отзывы читателей о книге Эта странная математика. На краю бесконечности и за ним, автор: Агниджо Банерджи. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x