Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним
- Название:Эта странная математика. На краю бесконечности и за ним
- Автор:
- Жанр:
- Издательство:Литагент Corpus
- Год:2021
- Город:Москва
- ISBN:978-5-17-119879-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Агниджо Банерджи - Эта странная математика. На краю бесконечности и за ним краткое содержание
В формате PDF A4 сохранен издательский макет.
Эта странная математика. На краю бесконечности и за ним - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Как-то не верится, что, бросая кости, древние греки или римляне не имели хотя бы интуитивного представления о вероятности выпадения того или иного варианта. Когда речь идет о деньгах или иной материальной выгоде, и игроки, и другие заинтересованные стороны очень быстро схватывают все нюансы игры. Так что, скорее всего, какое-то внутреннее чутье, понимание шансов благоприятного исхода сформировалось не одно тысячелетие назад. Ну а наука всерьез взялась за изучение случайности и вероятности только в период позднего Возрождения и в XVII веке. В авангарде научных открытий в области случайности и вероятности в то время шли французский математик и философ (и к тому же ревностный янсенист) Блез Паскаль и его соотечественник Пьер де Ферма. Эти двое великих мыслителей взялись решить задачу, которую упрощенно можно сформулировать так: предположим, два игрока подбрасывают монету и денежный выигрыш достается тому, кто первым наберет три очка. Однако игра прерывается, скажем, в тот момент, когда один из игроков ведет со счетом 2:1. Как тогда разделить выигрыш между игроками наиболее справедливым образом? Еще до Паскаля и Ферма было предложено немало решений этой задачи. Возможно, ставку следует разделить поровну, раз игра не закончилась и определить победителя невозможно. Но это несправедливо по отношению к игроку, набравшему два очка, – надо же как-то учесть его преимущество. С другой стороны, вариант решения, в котором предлагалось отдать все деньги лидеру, несправедлив по отношению к его сопернику, у которого тоже был шанс выиграть, если бы игра продолжилась. В третьем варианте решения предлагалось разделить ставку с учетом набранных очков, то есть две трети отдать игроку с двумя очками и одну треть – игроку с одним очком. На первый взгляд, справедливо – но есть проблема. Предположим, игра прервалась бы при счете 1:0. В этом случае, если применять то же правило, игрок, набравший одно очко, получает все деньги, второй же (который мог бы выиграть, если бы игру довели до конца) остается ни с чем.
Паскаль и Ферма нашли более удачное решение, а заодно открыли новый раздел математики. Они вычислили вероятность победы каждого из игроков. Игроку с одним очком, чтобы выиграть, нужно набрать еще два очка подряд. Вероятность этого равна S, помноженной на S, то есть j. Таким образом, он должен получить четверть суммы выигрыша, а остальное идет сопернику. Этим же методом можно решить любую задачу такого рода, только вычисления могут оказаться посложнее.
Работая над этой задачей, Паскаль и Ферма пришли к понятию так называемого математического ожидания. В азартных играх или любой другой ситуации, когда успех зависит от случая, математическим ожиданием называют среднее значение выигрыша, на который вы можете резонно рассчитывать. Предположим, например, что вы играете в кости и выигрываете по шесть фунтов каждый раз, когда выпадает три очка. Ожидаемое значение выигрыша в этом случае – один фунт, поскольку шансы, что выпадет три очка, составляют один к шести, а одна шестая выигрыша – это и есть один фунт. Если играть много раз, за каждый бросок кости вы заработаете в среднем по одному фунту. После 1000 бросков ваш средний заработок составит 1000 фунтов, так что если каждый раз ставить по фунту, то вы как раз выйдете в ноль. Обратите внимание, что, хотя ожидаемое значение и составляет один фунт, выиграть ровно столько в этой игре невозможно. Не во всякой азартной игре возможно получить за одну партию точную ожидаемую сумму выигрыша; ожидаемое значение – это тот средний размер выигрыша за партию, на который вы можете рассчитывать при многократном повторении игры.
В лотерее ожидаемое значение, как правило, отрицательное, поэтому с рациональной точки зрения это не лучший способ заработать. (В некоторых лотереях при переносе джекпота иногда возникают ситуации, когда ожидаемое значение выигрыша становится положительным.) То же касается и игр в казино, по очевидной причине: казино – предприятие коммерческое, его задача – получать прибыль. Случаются, правда, и сбои из-за ошибки в расчетах. Известен случай, когда казино увеличило сумму выигрыша всего лишь по одному из исходов игры в блек-джек. В результате математическое ожидание выигрыша стало положительным и заведение за несколько часов потеряло огромную сумму. Заработок казино напрямую зависит от досконального знания математики теории вероятностей.
Случаются совпадения настолько маловероятные, что люди начинают подозревать неладное: один и тот же человек дважды выигрывает главный приз в лотерее или в двух розыгрышах выпадают одинаковые номера. Журналисты часто слетаются на такие истории как пчелы на мед, раздувая из кажущегося фантастическим совпадения настоящую сенсацию. А все из-за того, что мы в большинстве своем просто не умеем объективно оценивать вероятность подобных событий, поскольку исходим из ложных предпосылок. Взять хотя бы случай со счастливчиком, которому главный приз достался два раза: мы пытаемся решить эту задачу применительно к себе и рассуждаем – а у меня какие шансы выиграть дважды? И тут же отвечаем себе: да почти никаких. Но ведь те редкие люди, которым это удается, как правило, регулярно играют в лотерею много лет подряд. Два выигрыша за много лет игры – это уже совсем не так удивительно. Еще важнее помнить, какое огромное количество людей участвует в лотерее. Большинство из них никогда не выиграет джекпот даже один раз, не говоря уже о двух. Но при таком количестве играющих тот факт, что кто-то где-то выигрывает дважды, уже не выглядит таким уж невероятным.
Это может показаться парадоксальным и нелогичным, но причина в том, что мы пытаемся примерить задачу на себя. Естественно, крайне маловероятно, что именно вы выиграете джекпот два раза. Но если оценивать шансы того, что кому-либо из играющих так повезет, то вероятность такого выигрыша нужно умножить на количество участников лотереи (что значительно увеличивает шансы), а также на число способов, которыми можно выиграть лотерею дважды (оно приблизительно равно количеству раз, что участники сыграли в лотерею, возведенному в квадрат и деленному пополам). Если учесть все эти факторы, шансы того, что фортуна улыбнется кому-то дважды, начинают выглядеть довольно неплохо.
Наша ошибка при оценке вероятности какого-либо события заключается в том, что мы учитываем не все возможности его наступления. Именно она лежит в основе так называемого “парадокса дней рождения” (который, строго говоря, и парадоксом-то не является): если собрать в одной комнате 23 человека, то вероятность того, что у двух из них совпадут дни рождения, превысит 50 %. Казалось бы, она должна быть гораздо ниже. Кто-то даже поспорит: ведь если для такого совпадения достаточно всего 23 человек, то у каждого из нас должно быть как минимум несколько знакомых, родившихся в тот же день, что и мы, – а на деле такое всегда вызывает удивление. Но ведь в парадоксе речь идет не о вероятности того, что кто-то конкретный из этих людей (например, вы) обнаружит в комнате еще кого-то с тем же днем рождения, а о шансах того, что дни рождения совпадут у любых двоих из группы. Другими словами, нас интересует не вероятность того, что у двух конкретных членов группы один и тот же день рождения, а шансы того, что хотя бы два любых человека из группы родились в один день. Вероятность такого совпадения составляет 1 – (365/365 × 364/365 × 363/365 × … × × 343/365) = 0,507, или 50,7 %. В группе из 60 человек эта вероятность превышает 99 %. А вот чтобы получить 50-процентную вероятность того, что у кого-то в группе день рождения совпадает с вашим, нужно уже 253 человека.
Читать дальшеИнтервал:
Закладка: