Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных
- Название:Искусство статистики. Как находить ответы в данных
- Автор:
- Жанр:
- Издательство:Манн, Иванов и Фербер
- Год:2021
- Город:Москва
- ISBN:9785001692508
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Шпигельхалтер - Искусство статистики. Как находить ответы в данных краткое содержание
Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики. На русском языке публикуется впервые.
Искусство статистики. Как находить ответы в данных - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Действительно ли в некоторых регионах Великобритании смертность от колоректального рака в три раза выше?
Заголовок на уважаемом новостном сайте «Би-би-си» в сентябре 2011 года настораживал: «Трехкратное различие в уровне смертности от колоректального рака в Великобритании». Далее в статье объяснялось, что в различных округах страны показатели смертности от рака толстой кишки значительно разнятся, а комментатор добавлял, что «местным органам здравоохранения крайне важно изучить эту информацию и использовать ее для оповещения о потенциальных изменениях в оказании услуг».
«Трехкратное различие» звучит необычайно драматично. Но когда блогер Пол Барден наткнулся на эту статью, он задался вопросом: «Неужели люди в разных частях страны действительно сталкиваются со столь значительной разницей рисков умереть от рака? Чем объяснить такое расхождение?» Он счел это настолько неправдоподобным, что решил заняться этой темой. К счастью, все данные были в открытом доступе в интернете, и Барден обнаружил, что они подтверждают заявление «Би-би-си»: ежегодные показатели смертности от этого вида рака действительно отличались в три раза между разными регионами страны – от 9 случаев на 100 тысяч человек в районе Россендейл (Ланкашир) до 31 на 100 тысяч в округе Глазго-Сити [169].
Однако расследование на этом не закончилось. Барден построил диаграмму смертности населения в каждом округе, что дало картину, представленную на рис. 9.2. Видно, что точки (за исключением экстремального случая с Глазго-Сити) расположены в форме воронки, причем чем население округов меньше, тем разброс больше. Затем Пол добавил контрольные граничные значения, которые показывают, куда могли бы попасть точки, если бы разница между наблюдаемыми уровнями определялась исключительно естественной неизбежной изменчивостью числа людей, ежегодно умирающих от рака толстой кишки, а не какими-то систематическими отклонениями в рисках для различных округов. Эти предельные значения получены из предположения, что число смертей – это наблюдение, взятое из выборки с биномиальным распределением, размер которой равен количеству взрослого населения округа: вероятность того, что любой конкретный человек умрет от рака в течение года, составляет 0,000176 (это средний риск смерти по всей стране). Граничные значения включают 95 % и 99,8 % всех наблюдений соответственно. График такого типа называется воронкообразными широко используется при работе с несколькими медицинскими организациями или учреждениями, поскольку позволяет отобразить выбросы, не создавая упорядоченных таблиц.
Рис. 9.2
Ежегодные показатели смертности от колоректального рака на 100 тысяч человек в 380 округах Великобритании в зависимости от численности населения округа. Две пары пунктирных линий, полученные исходя из предположения о биномиальном распределении, обозначают области, куда должны были бы попасть 95 % и 99,8 % округов, если бы между ними не было никакой разницы в рисках. Только Глазго демонстрирует риск, отличный от среднего. Такой способ представления данных называется воронкообразным графиком
Данные достаточно хорошо укладываются в указанные пределы, а значит, различия между округами как раз такие, как мы бы ожидали в результате случайной изменчивости. В маленьких округах меньше случаев заболевания, поэтому они более уязвимы к случайным отклонениям и поэтому их показатели рассеяны сильнее: в Россендейле зафиксировано всего семь смертей, поэтому один лишний случай сильно изменяет уровень смертности. Следовательно, несмотря на драматический заголовок «Би-би-си», никаких сверхоткрытий здесь нет – трехкратное различие в уровне смертности мы могли бы ожидать даже в случае, если бы вероятность заболеть была бы в точности одинаковой во всех округах.
Этот простой пример преподает нам важный урок. Даже в эпоху открытых данных, науки о данных и журналистики данных нам по-прежнему нужны базовые статистические принципы, чтобы нас не ввели в заблуждение видимые закономерности в числах.
Наша диаграмма показывает, что единственное наблюдение, требующее внимания, – это точка, соответствующая Глазго. Неужели колоректальный рак – это, некий шотландский феномен? Действительно ли верно это наблюдение? Более поздние данные за 2009–2011 годы показывают, что уровень смертности от колоректального рака в Большом Глазго [170]составлял 20,5 на 100 тысяч человек, в Шотландии в целом – 19,6, а в Англии – 16,4: эти результаты ставят под сомнение вышеуказанное наблюдение для Глазго, но демонстрируют, что в Шотландии уровень смертности выше, чем в Англии. Как правило, заключения, сделанные после одного цикла решения задачи, поднимают новые вопросы и цикл начинается заново.
Отдельные наблюдения могут быть взяты из самых разных распределений, которые порой бывают сильно асимметричными или имеют длинные хвосты (как в случае дохода или числа сексуальных партнеров). Однако мы сделали решительный шаг в сторону изучения распределения статистик, а не отдельных наблюдений, и эти статистики в каком-то смысле обычно более усреднены. Мы уже видели в главе 7, что распределение выборочных средних у бутстрэп-выборок сходится к симметричной форме независимо от вида исходного распределения данных, и теперь можем пойти дальше, к более глубокой и замечательной идее, которая появилась около 300 лет назад.
Пример с левшами показывает, что по мере увеличения размера выборки отклонения для наблюдаемой доли уменьшаются – вот почему воронка на рис. 9.2сужается вокруг среднего значения. Это классический закон больших чисел, который в начале XVIII века вывел швейцарский математик Якоб Бернулли. Испытанием Бернулли называется эксперимент с двумя исходами – «успехом» и «неудачей», которые обычно обозначаются 1 и 0. Соответствующая случайная величина, принимающая значение 1 с вероятностью p и 0 с вероятностью 1 – p имеет распределение Бернулли. Например, если вы один раз подбрасываете симметричную монету, то число выпавших орлов – это случайная величина, имеющая распределение Бернулли с p = 0,5. Предположим, что вы с помощью монеты будете производить последовательность испытаний Бернулли. Тогда доля орлов будет постепенно приближаться к 0,5, и мы скажем, что наблюдаемая доля орлов сходится к реальной вероятности их выпадения. Конечно, поначалу эта доля может отличаться от 0,5, и после нескольких выпавших подряд орлов появляется искушение поверить, что решки теперь как-то «обязаны» появляться чаще, чтобы восстановить баланс. Это заблуждение известно как ошибка игрока , и такое психологическое препятствие преодолеть довольно сложно (могу судить по личному опыту). Однако у монеты нет памяти – ключевая идея в том, что монета не может компенсировать прошлый дисбаланс и просто выдает все новые и новые результаты очередных подбрасываний.
Читать дальшеИнтервал:
Закладка: