Владимир Арнольд - Теория катастроф
- Название:Теория катастроф
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1990
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Арнольд - Теория катастроф краткое содержание
Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Линии второго семейства — гладкие кривые. На кривой К они касаются линий первого семейства. В интересующей нас точке 3 оба семейства касаются линии К. Из этих соображений уже нетрудно усмотреть, что сеть предельных линий вблизи точки 3 выглядит так, как указано на рис. 58: выше кривой К линии второго семейства поднимаются при движении вдоль допустимого направления, ниже — опускаются (выбор направлений линий сети допускает еще несколько вариантов, аналогичных изображенному; разобравшись в рис. 58, читатель легко разберется в них сам).
Теперь на рис. 58 видно, что левее точки 3 граница области достижимости идет по линии второго предельного направления, а правее — первого (горизонтального). В точке 3 обе линии имеют второй порядок касания (как прямая и кубическая парабола). В окрестности этой точки граница достижимости диффеоморфна [6] Диффеоморфизм — это замена координат, гладкая вместе с обратной заменой.
графику функции у = х 2| х |.
Таким образом, точки 1 и 2 на рис. 57 и точка 3 на рис. 58 дают примеры устойчиво реализуемых событий на границе области достиэжимости, вызывающих особенности первых трех видов с. 49. Особенности четвертого вида возникают в ситуации рис. 59.
Рис. 59. Сложенные особенности на границе области достижимости
На этом рисунке, как и на рис. 58, цель находится внутри заштрихованной области полной управляемости. На границе К этой области расположены точки плоскости, в которых выпуклая индикатриса проходит через нуль. Ясно, что в управляемых системах общего положения это явление — прохождение индикатрисы через 0 — реализуется на линии. По одну сторону этой линии К лежит область полной управляемости (индикатриса окружает 0), по другую — область с двумя предельными направлениями. На разделяющей их границе К оба эти поля направлений сливаются в одно — поле направлений касательных к индикатрисам в нуле.
В общей точке кривой К направление этого поля составляет с К ненулевой угол. Событие, приводящее к особенности четвертого типа на границе области достижимости, — это касание кривой К с предельным направлением. Для систем общего положения такое касание реализуется в отдельных точках границы области полной управляемости К. На рис. 59 таких точек на кривой К три; средняя из них обозначена цифрой 4.
Чтобы изучить сеть предельных линий в окрестностях этих особых точек, полезно рассмотреть наше двузначное поле предельных направлений как однозначное поле направлений на поверхности, двулистно накрывающей область выше кривой К.
С этой целью рассмотрим множество всех направлений линейных элементов на плоскости. Это множество является трехмерным многообразием, так как направление определяется точкой приложения линейного элемента (две координаты) и еще своим азимутом (одна угловая координата).
Множество всех предельных направлений составляет подмножество множества всех направлений. Это подмножество — гладкая поверхность в трехмерном многообразии всех направлений. Трехмерное многообразие всех направлений проектируется на исходную плоскость (линейный элемент проектируется в свою точку приложения). Поверхность, образованная предельными направлениями, проектируется при этом в часть плоскости, расположенную выше кривой К. Это отображение проектирования поверхности на плоскость над кривой К имеет особенность, а именно складку Уитни.
Двузначное поле предельных направлений на плоскости определяет на построенной поверхности однозначное поле направлений всюду, кроме тех самых особенных точек кривой К (где индикатриса в 0 касается К), которые мы хотим изучать.
Предельные линии обоих полей предельных направлений после перехода на построенную поверхность образуют систему фазовых кривых гладкого векторного поля с особенностями в интересующих нас точках. Эти особые точки могут быть узлами, фокусами или седлами (на рис. 59 средняя точка — узел, а обе крайние — седла). Таким образом, расположение предельных линий на исходной плоскости получается из расположения фазовых кривых векторного поля в окрестности особой точки при отображении складки Уитни. Хотя это отображение Уитни и фазовые кривые не вполне независимы (в частности, над К фазовые кривые касаются ядра проектирования), сказанного достаточно, чтобы исследовать расположение предельных линий вблизи особой точки (между прочим, такую же картину образуют асимптотические линии вблизи параболической кривой на поверхности).
На рис. 59 изображен один из вариантов этого расположения. На рисунке видно, что изображенная Т-образным пунктиром граница области достижимости образована проекциями сепаратрис седел (крайних особых точек) при отображении двулистно накрывающей поверхности на плоскость. Над точкой 4 на накрывающей лежит особая точка типа "узел". В этот узел входят с разных сторон две сепаратрисы седел.
В узле эти две кривые имеют общую касательную и (в случав общего положения) могут быть заданы уравнениями парабол степени α > 1 вида
у = А | х | αпри х ≤ 0, у = В | х | αпри х ≥ 0
в подходящей системе координат.
Четвертая особенность границы области достижимости получается из этой пары парабол степени α на накрывающей поверхности при отображении складки Уитни.
Это обстоятельство показывает, между прочим, ошибочность чрезвычайно распространенного среди катастрофистов вульгарного истолкования деклараций Р. Тома о том, что "в природе встречаются только устойчивые явления и потому при изучении каждой задачи следует изучать устойчивые случаи, отбрасывая остальные как нереализуемые". В данном случае особенности первых трех типов устойчивы (с точностью до диффеоморфизмов), а четвертого нет. В то же время все 4 типа особенностей встречаются одинаково часто и изучение последней ничуть не менее важно, чем исследование остальных трех.
Об особенностях области достижимости, функции времени и оптимальной стратегии в управляемых системах общего положения с фазовым пространством большей размерности известно удивительно мало — лишь в 1982 г. доказано, что область достижимости является топологическим многообразием с краем.
Одним из промежуточных вопросов при исследовании управляемых систем оказывается вопрос об особенностях выпуклых оболочек гладких многообразий (кривых, поверхностей,...).
Выпуклой оболочкой множества называется пересечение всех содержащих его полупространств. Индикатриса управляемой системы может быть невыпуклой.
Однако оказывается, что невыпуклую индикатрису можно заменить ее выпуклой оболочкой.
Читать дальшеИнтервал:
Закладка: