Владимир Арнольд - Теория катастроф

Тут можно читать онлайн Владимир Арнольд - Теория катастроф - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Арнольд - Теория катастроф краткое содержание

Теория катастроф - описание и краткое содержание, автор Владимир Арнольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)

Теория катастроф - читать книгу онлайн бесплатно, автор Владимир Арнольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли В k, С k, F 4и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.

Golubitsky M., Schaeffer D. A theory for imper feet bifurcation via singularity theory //Commun. Pure Appl. Math. 1979. — V. 32. — P. 21 — 98.

Pitt D. H., Poston T. Determinacy and unfolding in the presence of a boundary, 1978. (Мифический препринт, цитированный в 16-й главе КНИГИ Постона и Стюарта "Теория катастроф и ее приложения" (М.: Мир, 1980)).

Slodowy P. Simple singularities and simple algebraic groups. Berlin — Heidelberg — New York: Springer — Verlag, 1980. — 175 p. (Lect. Notes Math., v. 815).

Siersma D. Singularities of functions on boundaries, corners etc. // Q. J. Math. Oxf. 1981. — V. 32. — Ser. II. — P. 119 — 127.

Матов В. И. Особенности функций максимума на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 6. — С. 195 — 222.

Матов В. И. Унимодальные и бимодальные ростки функций на многообразиях с краем // Тр. семинара им. И. Г. Петровского. — 1981. — Т. 7. — С. 174 — 189.

Щербак И. Г. Двойственность краевых особенностей // Успехи мат. наук. — 1984. — Т. 39, вып. 2. — С. 207 — 208.

Щербак И. Г. Фокальное множество поверхности с краем и каустики групп, порожденных отражениями Вk, Сk и F4 // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 1.- С. 90 — 91.

Щербак И. Г. Краевые особенности с простым разложением // Тр. семинара им. И. Г. Петровского.- 1990,- Т. 15.

Nguyen buu Duc, Nguyen tien Dai. Stabilite de l'interaction geometrique entre deux composantes holonomes simples // С. R. Acad. Sci. Paris, Ser. A. — 1980. — V. 291. — P. 113 — 116.

Ильюта Г. Г. Монодромия и исчезающие циклы для краевых особенностей // Функцион анализ и его прил. — 1985. — Т. 19, вып. 3. — С. 11 — 21.

Группы H 3и Н 4:

Ляшко О. В. Классификация критических точек функций на многообразии с особым краем // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 3. — С. 28 — 36.

Щербак О. П. Особенности семейств эвольвент в окрестности точки перегиба кривой и группа Н3, порожденная отражениями // Функцион. анализ и его прил. — 1983. — Т. 17, вып. 4. — С. 70-72.

Арнольд В. И. Особенности в вариационном исчислении // Успехи мат. наук. — 1984. — Т. 39, вып. 5. — С. 256.

Arnold V. I. Singularities of ray systems // Proc. of the International Congress of Mathematicians, August 16 — 24, 1983. Warszawa. — North-Holland 1984. — V. 1. — P. 27 — 49.

Варченко A. H., Чмутов С. В. Конечные неприводимые группы, порожденные отражениями, являются группами монодромии подходящих особенностей // Функцион. анализ и его прил. — 1984. — Т. 18, вып. 3. — С. 1 — 13.

Гивенталь А. Б. Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ. 1988. — Т. 33. — С. 55 — 112. — (Итоги науки и техники.)

Щербак О. П. Волновые фронты и группы отражений // Успехи мат. наук. — 1988. — Т. 43, вып. 3. — С. 125 — 160.

К добавлению

Более подробный анализ предшествовавших теории катастроф приложений ее идей имеется в статье:

Арнольд В. И. Теория катастроф. Современные проблемы математики. Фундаментальные направления. — М.: ВИНИТИ, 1986. — Т. 5. — С. 219 — 277. — (Итоги науки и техники.)

где приведена и соответствующая библиография.

См. также:

Bennequin D. Caustique mystique // Seminaire N. Bourbaki. — 1984. — № 634. — P. 1 — 37.

К заключению

Саати Т. Л. Математические модели конфликтных ситуации. — М.: Сов. радио, 1977. — С. 47 — 53.

Примечания

1

То есть для всех случаев, кроме некоторых исключительных.

2

"Я так думаю, голубушка, что декадентство это самое не что иное, как просто к купечеству подход". — В. М. Дорошевич. Рассказы и очерки (М., 1966. С. 295).

3

Под "типом" здесь понимается класс эквивалентности с точностью до диффеоморфизма плоскости, а не с точностью расслоенного диффеоморфизма (расслоенный диффеоморфизм — это семейство диффеоморфизмов фазового пространства, зависящих от параметра, сопровождаемых диффеоморфной заменой параметра).

4

Все перечисленные особенности классифицируются по типам A k, D k, о которых подробнее рассказано выше.

5

Первоначальное доказательство теоремы Уитни, о которой мы начали, занимало около 40 страниц; хотя окончательные геометрические результаты теории особенностей легко могут быть понятны и использованы, доказательства продолжают оставаться сложными.

6

Диффеоморфизм — это замена координат, гладкая вместе с обратной заменой.

7

Лагранжева эквивалентность двух лагранжевых особенностей — это отображение первого лагранжева расслоения на второе, переводящее первую симплектическую структуру во вторую и первое лагранжево подмногообразие во второе.

8

Достаточно взять уравнение (х — 1) ... (х — n) = 0; к приведенным рассуждениям остается добавить очень немного, чтобы получить вполне строгое доказательство "основной теоремы алгебры", по которой всякое уравнение степени n имеет n комплексных корней.

9

Между прочим, из топологических свойств тора (а именно из того, что пара меридианов делит тор на две части) следует, что периоды колебаний с одинаковой полной энергией в обеих ямах механической системы с потенциальной энергией четвертой степени одинаковы (на торической римановой поверхности множества уровня энергии — фазовые кривые обеих ям — разные меридианы).

10

Ситуация здесь в точности такая же, как с листом Мёбиуса. При непрерывном обходе вдоль осевой окружности листа Мёбиуса мы можем непрерывно отождествлять поперечные ей отрезки. Но когда мы впервые вернемся к исходному отрезку, полученное отождествление этого отрезка с самим собой будет менять местами его концы.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Арнольд читать все книги автора по порядку

Владимир Арнольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория катастроф отзывы


Отзывы читателей о книге Теория катастроф, автор: Владимир Арнольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x