Владимир Арнольд - Теория катастроф

Тут можно читать онлайн Владимир Арнольд - Теория катастроф - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Арнольд - Теория катастроф краткое содержание

Теория катастроф - описание и краткое содержание, автор Владимир Арнольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)

Теория катастроф - читать книгу онлайн бесплатно, автор Владимир Арнольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6. Если систему удается сразу, скачком, а не непрерывно, перевести из плохого устойчивого состояния достаточно близко к хорошему, то дальше она сама собой будет эволюционировать в сторону хорошего состояния.

С этими объективными законами функционирования нелинейных систем нельзя не считаться. Выше сформулированы лишь простейшие качественные выводы. Теория доставляет также количественные модели, но качественные выводы представляются более важными и в то же время более надежными: они мало зависят от деталей функционирования системы, устройство которой и численные параметры могут быть недостаточно известными.

Наполеон критиковал Лапласа за "попытку ввести в управление дух бесконечно малых". Математическая теория перестроек — это та часть современного анализа бесконечно малых, без которой сознательное управление сложными и плохо известными нелинейными системами практически невозможно.

Не требуется, однако, специальной математической теории, чтобы понять, что пренебрежение законами природы и общества (будь то закон тяготения, закон стоимости или необходимость обратной связи), падение компетентности специалистов и отсутствие личной ответственности за принимаемые решения приводит рано или поздно к катастрофе.

Задачи

К разделу 1

(здесь и далее переменная z — комплексная, х и у вещественные)

1. Найдите критические точки и критические значения отображений z → z 2, z → z 2+ εz.

2. Найдите критические точки и критические значения отображений (х, у) → (х 2+ ау, у 2+ bх)

3. Исследуйте бифуркации особых точек дифференциального уравнения х = -х 3+ х + а при изменении параметра а.

4. Исследуйте бифуркации особых точек в системе дифференциальных уравнений z = εz — z 2z + Az 3, где A — фиксированное комплексное число, а комплексное число ε обходит вокруг нуля,

5. Сколько имеется топологически различных вещественных многочленов пятой степени х 5+ ... с четырьмя различными вещественными критическими значениями? Два многочлена топологически одинаковы, если один можно превратить в другой непрерывными и сохраняющими ориентации заменами зависимой и независимой вещественных переменных.

6. Обозначим через а nчисло типов многочленов х n+1+... с n различными критическими значениями (так что ответ в предыдущей задаче будет обозначаться а 4) и составим функцию р (t) = Σa nt n/n!. Докажите, что р (t) = sec t + tg t (так что a nвыражаются через числа Бернулли при нечетных n и через числа Эйлера — при четных).

7. Рассмотрим в пространстве многочленов х 5+ ... область, образованную многочленами с четырьмя различными вещественными критическими значениями. Сколько компонент связности имеет эта область?

8. Предположим, что второй дифференциал гладкой функции двух переменных в критической точке положительно определен. Докажите, что после надлежащей гладкой замены зависимой переменной u и независимых переменных (х, у) функция приводится к виду u = х 2+ у 2.

9. Предположим, что второй дифференциал гладкой функции n переменных в критической точке — невырожденная квадратичная форма. Докажите, что после надлежащей гладкой замены зависимой переменной u и n независимых переменных (х, у) функция приводится к виду и = х 2 1+ . . . + х 2 k— у 2 1— . . . — y 2 1, k + l = n.

10. Докажите, что в критической точке аналитической функции двух переменных исчезают, как правило, 6 (комплексных) точек перегиба линии уровня,

К разделу 2

11. Сколько точек сборки имеет отображение z → z 2+ εz?

12. Имеют ли точки сборки отображение (х, у) → (х 2+ ау, у 2+ bх)?

13. Докажите, что число точек сборки отображения (общего положения) сферы на плоскость четно.

14. Пусть на сфере дана функция, интеграл которой по сфере равен нулю и для которой нуль — не критическое значение. Существует ли гладкое отображение сферы на плоскость, все особенности которого — складки и которое имеет якобианом данную функцию?

15. Докажите, что отображение сферы на плоскость, все критические точки которого — складки и сборки, может иметь линией критических точек любую (непустую) гладкую кривую на сфере.

16. Предположим, что все критические точки гладкого отображения сферы на плоскость — складки и сборки и что число областей на сфере, где якобиан отображения положителен, равно а, а где он отрицателен — b. Докажите, что число сборок не меньше, чем 2 | а — b |.

17. Сопоставим каждому вектору нормали к эллипсу его конец. Докажите, что построенное отображение цилиндра на плоскость имеет четыре точки сборки.

18. Если заменить в задаче 17 эллипс несамопересекающейся кривой общего положения, то число точек сборки соответствующего отображения цилиндра на плоскость не меньше четырех.

К разделу 3

19. Рассмотрим на эллипсе функцию "расстояние от точки эллипса до фиксированной точки плоскости", Критические точки таких функций образуют поверхность в трехмерном многообразии — прямом произведении эллипса на плоскость. Сколько сборок имеет проектирование этой поверхности на плоскость? Как выглядит множество критических значений проектирования?

20. Рассмотрим в пространстве функций на окружности множество всех функций, имеющих кратные критические значения. Лежит ли эта гиперповерхность в пространстве функций односторонне или двусторонне (т. е. можно ли ее снабдить трансверсальным направлением, меняющимся непрерывно вплоть до точек самопересечения и граничных точек)?

К разделу 4

21. Рассмотрим параболический цилиндр, опирающийся образующей прямой на горизонтальную плоскость. При каких положениях центра тяжести цилиндра над точкой касания положение равновесия устойчиво, а при каких — нет? Исследуйте особенности границы области устойчивости.

22. Нарисуйте график функции

f (u, υ) = min (x 4+ uх 2+ υx).

К разделу 5

23. При каких значениях параметров теряет устойчивость положение равновесия системы х — х (а + bх + cy), y = y(d + ex fy), для которого ху ≠ 0? Как выглядят фазовые кривые при этих значениях параметров?

24. Рассмотрим гладко зависящее от одного параметра векторное поле на прямой. Докажите, что гладкой заменой параметра и гладкой заменой координаты на прямой, гладко зависящей от параметра, такое поле общего положения приводится (в окрестности бифурцирующей особой точки) к полю, определяющему эволюционную систему х = х 2+ а + f (а) х 3, где f — гладкая функция, а — параметр (в аналитическом случае все замены можно сделать аналитическими).

25. Исследуйте поверхность равновесий зависящего от двух параметров семейства уравнений х = -х 3+ ах + b и особенности ее проектирования на плоскость параметров. Какая часть поверхности равновесий соответствует устойчивым положениям равновесия? Исследуйте поведение фазовой точки при медленном изменении параметров а (t), b (t).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Арнольд читать все книги автора по порядку

Владимир Арнольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория катастроф отзывы


Отзывы читателей о книге Теория катастроф, автор: Владимир Арнольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x