Владимир Арнольд - Теория катастроф

Тут можно читать онлайн Владимир Арнольд - Теория катастроф - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 1990. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Владимир Арнольд - Теория катастроф краткое содержание

Теория катастроф - описание и краткое содержание, автор Владимир Арнольд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Математическое описание катастроф — скачкообразных изменений, возникающих в виде внезапного ответа системы на плавное изменение внешних условий, дается теориями особенностей и бифуркаций. Их применения к конкретным задачам в разных областях науки вызвали много споров. В книге рассказывается о том, что же такое теория катастроф и почему она вызывает такие споры. Изложены результаты математических теорий особенностей и бифуркаций. Новое издание дополнено обзором недавних достижений теории перестроек, библиографией и задачником. Рассчитана на научных работников, преподавателей, студентов и всех, кто интересуется современной математикой.

Теория катастроф - читать онлайн бесплатно полную версию (весь текст целиком)

Теория катастроф - читать книгу онлайн бесплатно, автор Владимир Арнольд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Якоби в лекциях по динамике (1866) исследовал каустики системы геодезических эллипсоида, выходящих из одной точки, и обнаружил устойчивость точек возврата на каустиках.

Алгебраические геометры прошлого века хорошо знали типичные особенности кривых (Плюккер) и поверхностей (Сальмон), двойственных гладким. Ласточкин хвост подробно описан Кронекером (1878) и входил в учебники алгебры (Вебер, 1898); его можно найти в каталоге гипсовых поверхностей (Бриль, 1892), имеющихся в кабинетах геометрии старых университетов.

Типичные особенности отображений поверхностей в трехмерное пространство (зонтик Уитни, z 2= ху 2, половина которого изображена выше, на рис. 31) исследованы Кэли в 1852 г. Кэли изучал также геометрию семейства эквидистант и каустику трехосного эллипсоида — тем самым "кошелек", изображенный выше, на рис. 39, в. Он явно сформулировал задачу о топологии семейств линий уровня гладкой функции общего положения (1868) и исследовал бифуркации в некоторых типичных трехпараметрических семействах функций двух переменных.

Алгебраические аналоги теорем трансверсальности теории особенностей систематически использовались алгебраическими геометрами, особенно итальянской школы (Бертини, 1882 и др.).

Пуанкаре далеко развил теорию бифуркаций (включая более сложные, чем "бифуркация Хопфа" случаи) в своей диссертации и в "Новых методах небесной механики" (т. I, п. 37, п. 51; т. III, гл. 28 и т. п.).

К сожалению, бесхитростные тексты Пуанкаре трудны для математиков, воспитанных на теории множеств. Пуанкаре сказал бы: "прямая делит плоскость на две полуплоскости" там, где современные математики пишуа просто: "множество классов эквивалентности дополнения [R 2\ R 1к прямой R 1на плоскости R 2, определяемых следующим отношением эквивалентности: две точки А, В ∈ R 2\ R 1считаются эквивалентными, если соединяющий их отрезок АВ не пересекает прямую R 1, состоит из двух элементов" (цитирую по памяти из школьного учебника).

В книге "Математическое наследство Пуанкаре", изданной Американским математическим обществом, написано даже, что Пуанкаре не знал, что такое многообразие. В действительности определение (вещественного) гладкого многообразия в Analysis Situs Пуанкаре подробно изложено. В современных терминах оно таково: многообразием называется подмногообразие евклидова пространства, рассматриваемое с точностью до диффеоморфизма.

Это простое определение настолько же лучше современных аксиоматических конструкций, насколько определение группы как (рассматриваемой с точностью до изоморфизма) группы преобразований и определение алгоритма, основанное на какой-либо (универсальной) машине Тьюринга, понятнее абстрактных определений.

Абстрактные определения возникают при попытках обобщить "наивные" понятия, сохраняя их основные свойства. Теперь, когда мы знаем, что эти попытки не приводят к реальному расширению круга объектов (для многообразий это установил Уитни, для групп — Кэли, для алгоритмов — Черч), не лучше ли и в преподавании вернуться к "наивным" определениям?

Сам Пуанкаре подробно обсуждает методические преимущества наивных определений окружности и дроби в "Науке и методе": невозможно усвоить правило сложения дробей, не разрезая, хотя бы мысленно,: яблоко или пирог.

В 1931 г. А. А. Андронов выступил с обширной программой, отличающейся от современной программы катастрофистов только тем, что место еще не созданной к тому времени теории особенностей Уитни занимают качественная теория дифференциальных уравнений и теория бифуркаций Пуанкаре. Идеи структурной устойчивости (грубости), коразмерности (степени негрубости), бифуркационные диаграммы, явная классификация бифуркаций общего положения и даже исследование складок и сборок гладких отображений поверхностей на плоскость явно присутствуют в работах А. А. Андронова и его школы.

Физики всегда использовали более или менее эквивалентные теории катастроф построения при исследовании конкретных задач. В термодинамике эти идеи систематически использовались Максвеллом и особенно Гиббсом (1873). Перестройка изотерм диаграммы ван дер Ваальса — типичный пример применения геометрии сборки. Анализ асимптотики в окрестности критической точки быстро приводит к пониманию независимости этой геометрии от точного вида уравнения состояния — факт, хорошо известный со времен Максвелла и упоминаемый в большинстве учебников термодинамики (например, Ландау и Лифшица). Предложение Максвелла провести горизонтальный участок изотермы так, чтобы площади лунок над и под ним были равны, означает переход от одного из двух конкурирующих минимумов потенциала к другому в момент, когда второй становится ниже. Соответствующая бифуркационная диаграмма в теории катастроф называется стратом Максвелла . "Правило фаз" Гиббса доставляет топологические ограничения на строение этой и подобных ей бифуркационных диаграмм (открытие необходимости строго доказывать подобные факты — заслуга математики более позднего периода). Гиббс также явно указал на связь термодинамики с геометрией контактной структуры.

Геологические применения анализа особенностей указаны Скрейнемакерсом (1917).

В теории "теплового взрыва" Семенова (1929) и в работах его последователей по теории горения явно изучались перестройки стационарных режимов при изменении параметров, что приводило к необходимости исследования и складок, и сборок, и более сложных ситуаций. В частности, в работе Я. Б. Зельдовича 1940 г. проанализированы явления, происходящие при морсовской перестройке кривой равновесий на плоскости фазовой переменной и параметра (рождении новых островков или их слиянии с основной кривой). В современной математической теории аналогичный анализ выполнен лишь в последние годы.

Анализ волнового поля вблизи каустики и ее особенностей привел Эйри и Пирси к осциллирующим интегралам, фаза которых доставляет нормальную форму складки и сборки соответственно. В связи с этим стоит отметить, что найденные М. А. Леонтовичем и В. А. Фоком асимптотики поля вблизи границы до сих пор не переварены теорией катастроф.

В теории упругости Койтер в 1945 г. обнаружил полукубическую особенность в зависимости предельной нагрузки от нецентральности ее приложения в задаче о прощелкивании арки. Специалисты по теории упругости использовали геометрию сборки для выбора программ испытаний упругих конструкций, при которых не происходит прощелкивания несмотря на высокие нагрузки.

Вычисления в этих исследованиях обычно проводились без общей теории, за счет правильного отбрасывания одних членов ряда Тейлора и оставления других "наиболее важных". Из физиков, особенно систематически применявших теорию катастроф до ее возникновения, стоит особо выделить Л. Д. Ландау. В его руках искусство отбрасывать "несущественные" члены ряда Тейлора, сохраняя меньшие по величине "физически важные" члены, дало много включаемых в теорию катастроф результатов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Владимир Арнольд читать все книги автора по порядку

Владимир Арнольд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория катастроф отзывы


Отзывы читателей о книге Теория катастроф, автор: Владимир Арнольд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x