Наум Виленкин - В поисках бесконечности

Тут можно читать онлайн Наум Виленкин - В поисках бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Наум Виленкин - В поисках бесконечности краткое содержание

В поисках бесконечности - описание и краткое содержание, автор Наум Виленкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

В поисках бесконечности - читать книгу онлайн бесплатно, автор Наум Виленкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Итак, говоря о множестве, мы объединяем некоторые элементы или понятия в одно целое и в дальнейшем оперируем этим целостным понятием. Основатель теории множеств немецкий математик Георг Кантор [39] Кантор Георг (1845-1918) — немецкий математик, создатель теории множеств. выразил это так: "Множество есть многое, мыслимое нами как единое".

Для того чтобы наглядно представить себе понятие множества, один из основателей русской теоретико-множественной школы академик Н. Н. Лузин [40] Лузин Николай Николаевич (1883-1950) — советский математик, один из основателей Московской математической школы, автор ряда выдающихся работ по теории множеств и теории функций действительного переменного. предложил следующий образ. Представим прозрачную непроницаемую оболочку, нечто вроде плотно закрытого прозрачного мешка. Предположим, что внутри этой оболочки заключены все элементы данного множества А и что, кроме них, никаких элементов там не находится. Эта оболочка с находящимися внутри нее предметами и может служить образом множества А, состоящего из этих элементов. Сама же прозрачная оболочка, охватывающая все элементы множества, и только их, изображает тот акт объединения элементов, в результате которого создается множество А.

Множества и свойства объектов.

Ни бесконечные множества, ни конечные множества, содержащие очень много элементов, невозможно задать с помощью списков. Чтобы определить такое множество, прибегают к указанию свойства, присущего всем его элементам, но не присущего ни одному элементу, не принадлежащему определяемому множеству. Это свойство элементов множества называется для него характеристическим .

Например, для множества простых чисел характеристическим является то, что все его элементы — натуральные числа, имеющие ровно два делителя. Пользуясь этим свойством, можно сразу сказать, что ни число 1, ни число 18, ни, наконец, число 2/ 3не являются простыми. Число 1 потому, что оно имеет лишь один, а не два различных делителя, число 18 потому, что у него шесть различных делителей: 1, 2, 3, 6, 9, 18, а число 2/ 3потому, что оно не является натуральным. Число же 7 является простым, так как оно имеет ровно два делителя: числа 1 и 7.

В древности философы усиленно искали характеристические свойства различных множеств. Например, знаменитому древнегреческому философу Платону приписывали следующее определение: "Человеком называется двуногое живое существо, лишенное перьев". Рассказывают, что его современник Диоген ощипал петуха и сказал: "Вот человек Платона". Пришлось Платону добавить к своему определению слова "и с широкими ногтями". Теперь уже получилось характеристическое свойство для множества людей, которое, впрочем, никак не раскрывало истинную сущность понятия человек .

Если слова "элемент x обладает свойством P>> обозначить для краткости P(x), то множество элементов, обладающих этим свойством, обозначают {x| P(x)}. Например, множество A = {x|x 2-3x+2 = 0} состоит из всех корней уравнения x 2-3x+2 = 0, а множество B = {x|x∈N и 0равными и пишут A = B = {1, 2}. Этот пример показывает, что, хотя понятия множества и его характеристического свойства тесно связаны друг с другом, они отнюдь не являются тождественными — одно и то же множество может задаваться различными характеристическими свойствами. Характеристические свойства, задающие одно и то же множество, называют обычно равносильными.

Во многих математических теоремах речь идет о совпадении двух множеств, например множества натуральных чисел, делящихся на 3, и множества натуральных чисел, сумма цифр десятичной записи которых делится на 3, или множества равносторонних треугольников и множества равноугольных треугольников. В некоторых случаях проблема совпадения или различия двух множеств, заданных своими характеристическими свойствами, не решена до сих пор. Например, неизвестно, совпадает ли множество натуральных чисел n, для которых уравнение x n+ y n= z nимеет решение в натуральных числах, с множеством {1,2} (так называемая великая теорема Ферма ), совпадает ли множество простых чисел p, для которых 2 p-1 делится на p 2, с множеством {1093, 3511} и т. д.

Множества и реальный мир.

Мы уже говорили, что элементами множеств могут быть объекты самого различного вида. Специалисты в тех или иных областях науки имеют дело с множествами предметов и понятий, рассматриваемых в этих науках. Сейчас теоретико-множественные методы используются и в лингвистике, и в этнографии, и в физике. Лингвисты рассматривают, например, множество глаголов или множество падежей данного языка, этнографы — множество видов родственных отношений для членов данного племени, физики — множество молекул газа в данном объеме.

Все эти множества конечны и потому во многих случаях могут быть заданы своими перечнями. Например, учитель, изучая успеваемость в каком-нибудь классе средней школы, задает множество учеников этого класса их списком в классном журнале, библиотекарь задает списком (каталогом) множество книг в библиотеке, географ задает списком множество государств на земном шаре.

По мере развития физики элементарных частиц оказывается все более сложным делом описывать эти частицы на языке теории множеств, поскольку они все время превращаются друг в друга, причем из протона может получиться нейтрон, а из нейтрона — снова протон, так что слова "состоит из" утрачивают свой наглядный смысл.

При составлении множеств из объектов реального мира приходится обычно отождествлять те или иные предметы или понятия. Например, говоря о множестве слов русского языка, составитель словаря пренебрегает тем, что эти слова по-разному произносятся в разных областях страны. Для него эти варианты произношения несущественны и задают один и тот же элемент множества русских слов. По-иному подходят к тому же множеству диалектологи, для которых наиболее интересны именно различные варианты произношения.

Таким образом, говоря об элементах того или иного множества (как состоящего из реальных объектов, так и составленного из абстрактных понятий), мы осуществляем некоторую операцию отождествления, интуитивно чувствуя, что в данном случае она не приведет к противоречию. Иными словами, множества возникают из более расплывчатых понятий путем отождествления тех или иных элементов.

Другие осложнения при использовании теоретико-множественных понятий для изучения реального мира возникают из-за расплывчатости, нечеткости многих понятий, недостаточной определенности многих свойств предметов, трудности расчленения действительности на отдельные объекты. О некоторых из этих осложнений будет рассказано далее.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наум Виленкин читать все книги автора по порядку

Наум Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В поисках бесконечности отзывы


Отзывы читателей о книге В поисках бесконечности, автор: Наум Виленкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x