Наум Виленкин - В поисках бесконечности
- Название:В поисках бесконечности
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наум Виленкин - В поисках бесконечности краткое содержание
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таким образом, привычное противопоставление конечности и бесконечности в пространстве, конечности и бесконечности во времени как взаимоисключающих возможностей и вообще привычная нам постановка вопроса о конечности и бесконечности в пространстве и во времени едва ли могут считаться правильными во всех случаях.
Ситуация осложняется еще возможной неоднородностью и анизотропией (различием свойств в разных направлениях) Вселенной, которые могут привести к тому, что ее модель оказалась бы похожа не на трехмерную сферу, а на более сложные геометрические образы (вспомним, что даже среди поверхностей нулевой кривизны есть не только куски плоскости, но и такие поверхности, как цилиндры и конусы). Таким путем возникает бесконечное многообразие возможных моделей Вселенной, которое неизмеримо богаче, но в то же время и неизмеримо сложнее, чем то, что допускалось дорелятивистской космологией.
Все эти сложности показывают, что однозначный ответ на поставленный выше вопрос вряд ли возможен.
Неизмеримо осложнился и вопрос о бесконечной делимости вещества. Если в начале XX в. считали, что оно состоит из неделимых далее атомов, то после открытий Резерфорда оказалось, что атомы сами состоят из ядер и электронов. Потом были открыты протоны, еще через некоторое время — нейтроны и позитроны, и к концу 30-х годов сложилась нейтронно-протонная модель атомного ядра. Эта модель оказалась настолько удачной, что позволила решить проблему освобождения атомной энергии. Но еще до пуска первого реактора появились новые элементарные частицы — мезоны различного рода. А дальше число элементарных частиц росло чуть ли не по показательному закону — антипротоны и антинейтроны, всевозможные гипероны и антигипероны, резонансы и т. д. И при этом оказалось, что нейтроны могут превращаться в протоны, а протоны — в нейтроны, а потому для них понятие "состоит из" потеряло смысл.
Чтобы навести порядок в мире элементарных частиц, были придуманы частицы нового вида — кварки, которых, однако, никто не наблюдал, хотя с их помощью все хорошо объясняется. Они отличаются друг от друга цветом (совершенно условное название), и была создана новая область физики — хромодинамика . По новейшим воззрениям мы и не сможем никогда увидеть кварки "живьем". Дело в том, что внутри элементарных частиц между кварками действуют силы, которые возрастают по мере увеличения расстояния между ними (как растет сила натяжения пружины, когда ее растягивают). Таким образом, трудно сказать, как теперь надо понимать безграничную делимость вещества.
Глава 2. Тайны бесконечных множеств
Понятие без определения.
О многом и едином рассуждали Пифагор и Зенон, Платон и Аристотель. Еще пифагореец Модерат определял число (разумеется, натуральное), как собрание единиц, а Евклид в VII книге "Начал" прямо пишет, что "Число же — множество, составленное из единиц" (в древнегреческой математике единица числом не считалась).
Но "теоретико-множественный бум", то есть широкое использование теории множеств в самых разных областях науки и техники, возник только в XX в. Почему же раньше обходились без этого понятия? Ответ на этот вопрос весьма несложен: те, кто раньше не знал о множествах, были подобны мольеровскому герою, не знавшему, что он говорит прозой. Они имели дело с множествами на каждом шагу, не называя их лишь по имени.
Экономист, планировавший взаимосвязи между цехами завода, не думал о каждом отдельном станке, он размышлял о всей совокупности токарных или фрезерных станков и об их производительности. Точно так же офицер, готовивший военную операцию, должен был в зависимости от своего ранга обдумывать действия роты или батальона, полка или дивизии, но не действия каждого солдата в отдельности.
Всем им приходилось работать с совокупностями некоторых объектов, изучая их как нечто целое, объединенное в один коллектив. Математик сказал бы, что они имели дело со множествами элементов, а не с отдельными элементами. К сожалению, он не смог бы ответить на вопрос, что же такое множество. Дело в том, что математики привыкли, определяя новое понятие, сводить его к другим, уже известным ранее. Но откуда-то надо начинать, а понятия более первичного, чем множество, в математике нет.
Это и неудивительно, если вспомнить, что почти любая наука начинается с классификации, с объединения в одно целое похожих объектов или понятий и с разграничения непохожих вещей. До того, как возникла биология, люди должны были научиться отличать друг от друга волков и шакалов, зайцев и кроликов. А до создания минералогии надо было много столетий собирать камни и отличать друг от друга граниты и кремни, малахиты и яшмы. Но каждая классификация с точки зрения математики сводится к образованию множеств по некоторым признакам. Поэтому и нельзя свести понятие множества к более простым. Мы ограничимся лишь тем, что приведем еще несколько примеров множеств.
Можно говорить, например, о множестве стульев в данной комнате, о множестве всех протонов на Юпитере, о множестве слов, встречающихся в произведениях А. С. Пушкина, о множестве всех клеток человеческого тела, о множестве всех рыб в океане, о множестве всех натуральных чисел, о множестве всех точек на плоскости, о множестве всех сфер в пространстве и т. д.
Объекты или понятия, из которых составлено данное множество, называются его элементами. Приведенные выше примеры показывают, что этими элементами могут быть как реальные объекты (стулья, протоны, рыбы и т. д.), так и абстрактные понятия (числа, точки, геометрические фигуры и т. д.). В качестве элементов множеств могут выступать даже такие создания человеческой фантазии, как мифологические герои, привидения и боги всевозможных религий.
Если множество состоит из реальных объектов, оно, как правило, конечно, то есть содержит конечное число элементов. Конечные множества обычно задают списком их элементов. Например, множество дней недели задается списком
{понедельник, вторник, среда, четверг, пятница, суббота, воскресенье}.
Разумеется, конечные множества, содержащие слишком много элементов, задать списком невозможно — вряд ли кому-нибудь удастся "переписать" всех рыб в океане или все песчинки на берегу моря.
Конечными могут быть и множества, состоящие из абстрактных понятий или мифологических героев и богов (например, конечны множества четных простых чисел, олимпийских богов и т. д.). А множество натуральных чисел бесконечно, так же как и множество точек на плоскости.
Фигурные скобки, в которые заключен список элементов множества, символизируют объединение этих элементов в одно целое. При этом принадлежность элемента а множеству А записывают с помощью знака ∈: а∈А. Если нее элемент а не принадлежит множеству А, то пишут, что а∈А. Например, если обозначить буквой N множество натуральных чисел, то 6∈N, а 3/ 4∉N и крокодил ∉N. Если А — множество всех месяцев в году, то май ∈A, а среда ∉A.
Читать дальшеИнтервал:
Закладка: