Наум Виленкин - В поисках бесконечности
- Название:В поисках бесконечности
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наум Виленкин - В поисках бесконечности краткое содержание
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Эйнштейн предложил вместо определения суммы углов космических треугольников пронаблюдать за изменением хода световых лучей. Из его теории следовало, что если сфотографировать одну и ту же звезду дважды — когда ее луч проходит далеко от Солнца и когда он проходит около Солнца, то мы заметим сдвиг ее положения, вызванный искривлением светового луча.
Впрочем, отклонение должно было иметь место и по обычной физике, но у Эйнштейна оно оказалось вдвое большим. Надо сказать, что и по новой теории отклонение было очень небольшим — меньше двух угловых секунд (под таким углом мы увидим двухкопеечную монету с расстояния в 1200 метров). Но все-таки такое отклонение можно измерить, и хотя вблизи Солнца звезда тонет в сиянии солнечных лучей, во время полных солнечных затмений соответствующие наблюдения удается провести.
Поэтому весной 1919 г. были отправлены две научные экспедиции для измерения кривизны пространства: одна на западное побережье Африки, а другая — в Северную Бразилию. Наблюдения, проведенные ими 29 мая 1919 г., полностью подтвердили предсказание Эйнштейна: смещение звезды оказалось именно таким, каким оно должно было быть по его теории. Тем самым было доказано, что материя искривляет окружающее ее пространство.
Другое доказательство искривленности пространства дали наблюдения за планетой Меркурий. Эта планета находится ближе к Солнцу, чем остальные планеты, и потому испытывает наибольшее влияние искривленности околосолнечного пространства. Из-за этой искривленности после полного оборота Меркурия вокруг Солнца его орбита немного поворачивается. Впрочем, орбита поворачивается и по другой причине — из-за притяжения планет. Поворот орбиты, вызванный притяжением планет, астрономы умели учитывать. Но их расчеты не сходились с действительностью — орбита поворачивалась быстрее, чем нужно, на 41 секунду в сто лет. Когда подсчитали по формулам Эйнштейна, на сколько поворачивается орбита из-за кривизны пространства, ответ был: на 41 секунду в сто лет. Этим была объяснена загадка, долгое время мучившая астрономов, а заодно получено новое подтверждение теории относительности.
Расширяющаяся Вселенная.
После появления общей теории относительности перед астрономами встал важнейший вопрос: а как же устроено реальное пространство? Ведь если оно искривлено и кривизна его положительна, то оно может быть устроено примерно как трехмерная сфера, то есть но иметь нигде границ и в то же время иметь конечные размеры. Некоторые философы отрицали самую возможность конечности размеров реального пространства. Но их доводы не более убедительны, чем доказательства ялмезянских ученых, считавших, что они живут на бесконечной плоскости, а не на ограниченной сфере. Ответ на поставленный вопрос должны были дать не умозрительные построения, а астрономические исследования.
Первую попытку построить модель Вселенной на основе новой теории тяготения сделал сам Эйнштейн. Однако она оказалась не слишком удачной. Дело в том, что он попробовал построить модель стационарной Вселенной, не меняющейся с течением времени. Ведь еще Аристотель писал, что "в продолжение всего прошедшего времени, согласно летописям, завещаемым потомкам от поколения к поколению, мы не находим следа изменений ни во всем удаленном небе в целом, ни в одной из подходящих частей неба".
Чтобы построить стационарную модель Вселенной, Эйнштейну пришлось ввести предположение о существовании сил, отталкивающих галактики друг от друга и пропорциональных разделяющему их расстоянию. Существование таких сил не подтверждалось какими-либо известными в то время опытами. Впоследствии Эйнштейну пришлось признать предположение о таких силах отталкивания "самой грубой ошибкой в своей жизни".
Неожиданное решение предложил в 1922 г. молодой ленинградский математик Александр Александрович Фридман [30] Фридман Александр Александрович (1888-1925) — советский физик и космолог.
. В статье "О кривизне пространства" он доказал, что уравнения общей теории относительности имеют нестационарные решения, то есть решения, при которых Вселенная либо расширяется, либо сжимается. При этом соответственно кривизна и плотность материи должны либо уменьшаться, либо увеличиваться. Любопытно, что теоретическая физика отнюдь не была основным предметом исследований Фридмана — его главные работы лежат в области динамической метеорологии.
Решение, полученное Фридманом, настолько противоречило установившимся взглядам на строение Вселенной, что первой мыслью ученых было предположение о допущенной им ошибке. Именно так отозвался об этой работе Эйнштейн в краткой заметке, помещенной в очередном номере того же физического журнала, где была опубликована статья Фридмана. Вскоре Эйнштейн получил подробное письмо от автора статьи, рассеявшее все сомнения. И хотя Эйнштейн был уже тогда общепризнанным главой физиков, а Фридман — начинавшим исследователем, маститый ученый ни минуты не поколебался в том, как ему следует поступить. 13 мая 1923 г. в редакцию "Физического журнала" поступило следующее письмо Эйнштейна, опубликованное под заголовком "Заметка о работе А. Фридмана о кривизне пространства": "В предыдущей заметке я критиковал названную работу. Однако моя критика, как я убедился из письма Фридмана, основывалась на ошибках в вычислениях.
Я считаю результаты Фридмана правильными и проливающими новый свет. Оказывается, что уравнения поля допускают наряду со статическими также и динамические (т. е. переменные относительно времени) центрально-симметрические решения для структуры пространства".
Позднее выяснилось, что на самом деле статических решений не существует — модель Эйнштейна была неустойчивой и потому однородная и изотропная (одинаковая во всех направлениях) модель Вселенной обязана была оказаться нестационарной.
Вслед за Фридманом многие физики и астрономы начали строить динамические модели Вселенной. Так появились модели Леметра [31] Леметр Жорж (1894-1966) — бельгийский астроном и астрофизик, автор теории расширяющейся Вселенной.
, де Ситтера [32] Ситтер де Биллем (1872-1934) — голландский астроном, один из пионеров применения теории относительности к космологии.
и других.
И вновь возник вопрос об экспериментальном подтверждении той или иной модели Вселенной; в частности, надо было выяснить, расширяется она или сжимается. И тут астрономы вспомнили, что еще в начале XX в. американский астрофизик В. М. Слейфер [33] Слейфер Весто (1875-1969) — американский астроном, впервые измеривший лучевые скорости туманностей.
проводил измерения лучевых скоростей галактик. Оказалось, что 36 из 41 исследованных им галактик удаляются от нас, причем некоторые из них — со скоростью 2 000 км / с (впоследствии оказалось, что остальные 5 галактик приближаются к нам из-за собственного движения Солнца в нашей Галактике). Исследования Слейфера были продолжены американским астрономом Э. Хабблом [34] Хаббл Эдвин (1889-1953) — американский астроном, установил, что туманности являются звездными системами.
, который определил не только скорости галактик, но и их расстояния до Солнца. Проведенные им исследования показали, что имеет место замечательный закон: скорость удаления галактик от нас пропорциональна их расстоянию. Иными словами, быстрее всего удаляются от нас наиболее удаленные галактики.
Интервал:
Закладка: