Наум Виленкин - В поисках бесконечности

Тут можно читать онлайн Наум Виленкин - В поисках бесконечности - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, издательство Наука, год 1983. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Наум Виленкин - В поисках бесконечности краткое содержание

В поисках бесконечности - описание и краткое содержание, автор Наум Виленкин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ.
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.

В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)

В поисках бесконечности - читать книгу онлайн бесплатно, автор Наум Виленкин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

z = 0, α 1β 1α 2β 2α 3β 3... α nβ n...

Например, если

x = 0,515623...

и

y = 0,734856...,

то

z = 0,571354682536...

Точка z лежит на отрезке [0, 1], и ясно, что различным точкам квадрата соответствуют при этом разные точки отрезка. Ведь если точки T и T' не совпадают, то в десятичных записях чисел x и x' или y и y' хоть один знак будет разный. Но это приведет к тому, что десятичные записи соответствующих чисел z и z' не совпадут. Несколько более подробный анализ показывает, что тогда не совпадают и сами эти точки.

Всех точек отрезка мы не получим. Например, точка z = 0,191919... должна была бы получиться из пары x = 0,111..., y = 0,999..., соответствующей точке на стороне квадрата, а такие точки мы условились не брать. Поэтому при отображении квадрата на отрезок точка z не будет образом ни одной точки квадрата.

Мы установили взаимно однозначное соответствие между точками квадрата и частью точек отрезка [0, 1]. Это показывает, что множество точек квадрата имеет не большую мощность, чем множество точек отрезка. Но его мощность и не меньше, а потому эти мощности совпадают.

Не только квадрат, но и куб имеет столько же точек, сколь и отрезок. Вообще любая геометрическая фигура, содержащая хоть одну линию, имеет столько же точек, сколько и отрезок. Такие множества называют множествами мощности континуума (от латинского continuum — непрерывный).

Существует ли множество самой большой мощности?

Пока что самой большой мощностью, которую мы знаем, является мощность множества точек на прямой, то есть мощность континуума. Ни множество точек квадрата, ни множество точек куба не имеют большей мощности. Не является ли мощность континуума самой большой? Оказывается, что нет. Более того, вообще нет множества самой большой мощности. Для любого множества A есть множество, мощность которого больше мощности A. Этим множеством является, например, множество В всех функций, заданных на множестве A и принимающих значения 0 и 1.

Покажем сначала, что мощность множества B не меньше, чем мощность множества A. Для этого каждой точке α множества A поставим в соответствие функцию f a(x), принимающую в этой точке значение 1, а в остальных точках значение 0. Ясно, что разным точкам соответствуют разные функции. Например, если множество A состоит из трех точек 1, 2, 3, то точке 1 соответствует функция, принимающая в этой точке значение 1, а точке 2 — функция, принимающая в точке 1 значение 0. Эти функции не равны друг другу.

Итак, мощность множества B не меньше мощности множества A. Покажем теперь, что эти мощности не равны друг другу, то есть что нет взаимно однозначного соответствия между элементами множеств A и B.

В самом деле, предположим, что такое соответствие существует. Обозначим тогда функцию, соответствующую элементу a из A, через f a(x). Напомним, что все функции f a(x) принимают только два значения: 0 и 1.

Составим новую функцию φ(x), заданную равенством

φ(x) = 1 — f x(x).

Таким образом, чтобы найти значение функции φ(x) в некоторой точке а из A, надо найти сначала соответствующую этой точке функцию f a(x) и вычесть из 1 значение этой функции x = a. Ясно, что функция φ (x) также задана на множестве A и принимает значения 0 и 1. Следовательно, φ (x) является элементом множества B. Но тогда, по предположению, φ (x) соответствует некоторой точке b из A, а значит,

φ(x) = f b(x).

Учитывая первое равенство для φ(x), получаем, что для всех x из A

1 — f x(x) = f b(x),

Положим в этом равенстве x = b. Мы найдем тогда, что

1 — f b(b) = f b(b),

и потому

Но это противоречит тому что значения функции f bx равны 0 и 1 Полученное - фото 30

Но это противоречит тому, что значения функции f b(x) равны 0 и 1. Полученное противоречие показывает, что взаимно однозначного соответствия между множествами A и B быть не может.

Итак, для любого множества A можно построить множество B большей мощности. Поэтому множества самой большой мощности не существует. Отправляясь от самой малой из бесконечных мощностей — мощности множества натуральных чисел, мы получим сначала мощность континуума, потом мощность множества всех функций, заданных на множестве действительных чисел, и будем без конца подниматься вверх по этой головокружительной лестнице все увеличивающихся бесконечных мощностей.

Арифметика бесконечности.

Арифметика натуральных чисел не сводится к простому счету "один, два, три..." Натуральные числа можно складывать и вычитать, умножать и возводить в степень. Эти операции тесно связаны с операциями над конечными множествами. Складывая натуральные числа m и n, мы подсчитываем число элементов в объединении двух множеств, одно из которых содержит m элементов, а другое — n элементов (при этом, конечно, нужно, чтобы объединяемые множества не имели общих элементов — иначе получится меньше элементов, чем нужно). А умножая m на n, мы подсчитываем число пар (a, b), первый элемент которых принадлежит множеству A, состоящему из m элементов, а второй — множеству B, содержащему n элементов. В математике множество таких пар называют декартовым произведением множеств A и B и обозначают A×B.

Обозначим объединение множеств A и B, не имеющих общих элементов, через A+B, а мощность множества A — через |A|. Тогда сказанное выше можно записать так:

|A + B| = |A| + |B|,

|A×B| = |A||B|.

Но левые части этих равенств имеют смысл и для бесконечных множеств. Это позволяет определить операции сложения и умножения для бесконечных мощностей. С их помощью установленные ранее утверждения о мощностях можно записать в виде формул, где через N обозначено множество натуральных чисел, а через Δ — множество точек отрезка [0; 1]:

n + |N| = |N|, |N| + |N| = |N|, |N| = |N|, |N| + |Δ| = |Δ|, |N||Δ| = |Δ|, |Δ||Δ| = |Δ|

и т. д. Например, равенство |N||N| = |N|означает, что счетное множество счетных множеств счетно, а равенство |Δ||Δ| = |Δ|,- что квадрат имеет столько же точек, что и отрезок.

Для бесконечных мощностей можно определить и операцию возведения в степень с бесконечным же показателем. Несложно доказать, что число отображений множества A в множество B равно |B| |A|. Поэтому и для бесконечных мощностей смысл записи |B| |A|определяется аналогичным образом. Например, равенство 2 |N|= |Δ| означает, что множество бесконечных последовательностей, составленных из нулей и единиц, имеет мощность континуума.

Далеко не все законы обычной арифметики переносятся в область арифметики натуральных чисел. Кантор говорил, что законы арифметики бесконечности коренным образом отличаются от зависимостей, царящих в области конечного.

Трансфинитные числа.

Натуральные числа применяют не только для ответа на вопрос "сколько?", но и для ответа на вопрос "какой по счету?" Иными словами, их используют не только как количественные, но и как порядковые числа . Мощности можно использовать лишь как количественные числа. Для описания порядка нужны иные понятия. Даже самое простое из бесконечных множеств — множество Nнатуральных чисел — можно упорядочить бесчисленной совокупностью возможностей. Кроме стандартного расположения 1, 2, 3, 4, 5, 6, ... можно поступить и так: сначала взять все нечетные числа (с их обычным порядком), а потом все четные: 1, 3, 5, ..., 2, 4, 6, ... Но при попытке перенумеровать числа в таком порядке нас постигнет неудача — все номера окажутся затраченными на нечетные числа, а на долю четных чисел ничего не останется. Поэтому кроме обычных номеров понадобятся символы новой природы. Кантор предложил при таком порядке расположения чисел нумеровать число 2 символом ω, число 4 — символ ω+1 и т. д.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Наум Виленкин читать все книги автора по порядку

Наум Виленкин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




В поисках бесконечности отзывы


Отзывы читателей о книге В поисках бесконечности, автор: Наум Виленкин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x