Наум Виленкин - В поисках бесконечности
- Название:В поисках бесконечности
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Наум Виленкин - В поисках бесконечности краткое содержание
В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых.
Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
В поисках бесконечности - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Еще больше символов понадобится, если сначала выписать все числа, делящиеся на 3, потом дающие при делении на 3 остаток 1, и, наконец, числа, дающие при таком делении остаток 2:3,6, 9,..., 1,4,7,..., 2,5,8,... Здесь для нумерации числа 2 понадобится символ ω*2, число 5 будет занумеровано символом ω*2+1 и т. д. А если выписать сначала все простые числа, потом числа, разлагающиеся в произведение двух простых множителей, трех простых множителей и т. д., а в самом конце записать число 1, которое не относится ни к простым, ни к составным числам, то для обозначения последнего элемента придется применить совсем новый символ ω ω.
Кантор придумал еще много различных расположений множества натуральных чисел, причем все они (как и разобранные выше) обладали следующим свойством: каждая часть множества натуральных чисел имела в таком расположении наименьший элемент. Он назвал множества, элементы которых расположены в одном из этих порядков, вполне упорядоченными (термин применяется и для несчетных множеств), а символы, введенные им для нумерации элементов вполне упорядоченных множеств,- трансфинитными числами (от латинских слов trans — за и finitae — конечный). Изучая свойства трансфинитных чисел, Кантор пришел к следующей проблеме: какую мощность имеет множество всех счетных трансфинитов? Легко показать, что она несчетна, но не превосходит мощности континуума. А вот равна ли она этой мощности или меньше ее, на этот вопрос не смогли дать ответ ни сам Кантор, ни его многочисленные ученики и последователи. О современном состоянии указанной проблемы, называемой проблемой континуума, будет рассказано в главе 4.
В начале XX в. теория бесконечных множеств превратилась в модную область математической науки. Некоторые специалисты придавали очень большое значение исследованиям в этой области. Например, А. Френкель писал: "Завоевание актуальной бесконечности методами теории множеств можно рассматривать как расширение нашего научного кругозора, не меньшее по значению, чем коперникова система в астрономии и теория относительности и даже квантовая теория в физике".
Но самый строгий судья научных теорий — время ставит в конце концов все на свои места. Постепенно все реже и реже стали появляться работы, в которых бы использовались трансфинитные числа, исследовались мощности, отличные от счетной или континуальной. Множества с такими мощностями можно получить, рассматривая, например, все части плоскости или все функции на отрезке [0; 1]. Но дело в том, что и в теоретических исследованиях, и для решения практических проблем, нужны не любые части плоскости и не любые функции, а лишь получаемые с помощью фиксированных процессов из некоторых простейших. А множества таких "хороших" частей или функций имеют мощность континуума.
И хотя, по словам П. С. Александрова [51] Александров Павел Сергеевич (1896-1982) — советский математик, создатель советской топологической школы.
и А. Н. Колмогорова [52] Колмогоров Андрей Николаевич (р. 1903) — советский математик, автор ряда замечательных работ в области теории функций действительного переменного, теории вероятностей, топологии.
, "огромное влияние теории множеств на развитие математики последнего полустолетия является в настоящее время общепризнанным факушм", в настоящее время это влияние идет совсем по иным каналам. В следующей главе мы расскажем о том, как изменилось лицо некоторых областей математики под влиянием теоретико-множественных концепций.
Глава 3. Удивительные функции и линии, или прогулки по математической кунсткамере
Общий фундамент.
Через всю историю развития математической науки проходят диалектические противоположность и единство двух ее частей, одна из которых изучает числа, а другая — фигуры. Натуральные числа отличаются друг от друга своими свойствами: одни из них четны, а другие нечетны, одни являются простыми, а другие — составными, одни могут быть представлены в виде суммы двух квадратов, а другие так не представляются. Это бесконечное разнообразие свойств, столь разительно меняющихся при добавлении к числу хотя бы одной единицы, придает прелесть занятиям теорией чисел. Разумеется, столь же разнообразны по своим свойствам геометрические образы — треугольники и квадраты, окружности и параболы, астроиды и кардиоиды. Но все же каждая отдельно взятая линия, например прямая или окружность, состоит из совершенно одинаковых по своим свойствам точек.
По-разному проявляется в этих частях математики и идея бесконечности. В арифметике она воплощается как бесконечность натурального ряда чисел, а в геометрии — как бесконечность пространства и, в то же время как возможность неограниченного деления фигур на части. И все же, несмотря на эту, казалось бы, непреодолимую пропасть, связанную, быть может, с какими-то глубинными свойствами человеческого разума, на протяжении всей истории математики не прекращались попытки связать друг с другом арифметику и геометрию и постараться вывести всю математическую науку из единого основания.
В эпоху, когда математика была не столько наукой, сколько ремеслом, которым занимались египетские и вавилонские писцы, единство между арифметикой и геометрией проявлялось в наивной форме — среди различных задач рассматривали и задачи на вычисление площадей фигур и объемов тел. Первая попытка теоретического объединения арифметики и геометрии была предпринята в VI в. до н. э. в школе древнегреческого математика и философа Пифагора. Одно из дошедших до нас изречений Пифагора гласит: "Все есть число". Он не только пытался "поверить алгеброй гармонию", создав одну из первых математических теорий музыкальной гаммы, но и хотел свести к натуральным числам науку об измерении геометрических величин. Поэтому для всего миросозерцания пифагорейцев оказалось катастрофой сделанное одним из них открытие несоизмеримости стороны и диагонали квадрата (в течение длительного времени они скрывали этот факт от непосвященных).
После того как стала ясной невозможность построить геометрию на основе понятия натурального числа, древнегреческие математики, наоборот, стали выражать в геометрических терминах соотношения между любыми величинами. Хотя дискретное лучше поддавалось логическому анализу, непрерывное лучше охватывалось интуицией. На языке геометрии греческие ученые выражали алгебраические закономерности (именно с тех пор в математике укоренились термины квадрат числа, куб числа, среднее геометрическое, геометрическая прогрессия и т. д.), исследовали квадратические иррациональности, решали кубические уравнения. Саму же геометрию греческие ученые строили на идее о безграничной делимости линий, фигур и тел. Они создали абстрактные понятия о точке, не имеющей размеров, о линии, имеющей лишь длину, о геометрической поверхности. И хотя эти понятия были лишь смелым теоретическим обобщением представлений о реальных точках, линиях и поверхностях, они верно служили ученым в их исследованиях и позволяли получать с их помощью правильные формулы для площадей и объемов.
Читать дальшеИнтервал:
Закладка: