Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр
- Название:Дилемма заключенного и доминантные стратегии. Теория игр
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2014
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Хорди Деулофеу - Дилемма заключенного и доминантные стратегии. Теория игр краткое содержание
Есть ли способ заранее «просчитать» мысли и поведение человека? Ответы на эти и многие другие вопросы вы найдете в данной книге. Это не просто сборник интересных задач, но попытка объяснить сложные понятия и доказать, что серьезная и занимательная математика — две стороны одной медали.
Дилемма заключенного и доминантные стратегии. Теория игр - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Страница «Энциклопедии головоломок» Сэма Лойда.
Традиции Дьюдени и Лойда продолжились и в XX веке. Среди ведущих авторов первой половины XX века выделяется Морис Крайчик (1882—1957), составитель нескольких книг о математических играх и редактор бельгийского журнала «Сфинкс». После Второй мировой войны на этой арене господствовал Мартин Гарднер (1914—2010), автор множества книг и статей, публиковавшихся на протяжении более 25 лет в научно-популярном журнале Scientific American (русская версия носит название «В мире науки»). Почти до самой смерти Гарднер продолжал публиковать новые издания своих работ. Всего из-под его пера вышло свыше 70 книг, среди которых Origami, Eleusis and The Soma Cube («Оригами, элузис и кубики сома»), вышедшая в 2008 году. Помимо собственных работ, он познакомил читателей с многими интересными играми, среди которых «Жизнь» Джона Конвея и «Элузис» Роберта Эббота (1956).
В каждой игре существует некая цель и определенные правила, и в этом элузис не похож ни на одну из них, ведь цель этой игры — угадать правила, придуманные одним из игроков, причем каждая партия играется по новым правилам. Игра рассчитана на 4-8 игроков, и для нее достаточно трех колод карт и нескольких фишек. Партия состоит из числа раундов по числу игроков. В каждом раунде один из игроков раздает остальным по 14 карт, после чего превращается в «бога игры», создателя правил, и выкладывает последнюю карту на стол. Раздающий должен записать на листе бумаги секретное правило, по которому формируется последовательность карт. Правила могут быть очень простыми (красное — черное или чет — нечет), но их можно придумать бесчисленное множество: четные после красных и нечетные после черных, четыре четных разной масти и четыре нечетных одной масти. В интересах того, кто придумывает правила, — сделать их неочевидными, но и не слишком сложными, так как если никто не поймет правил, игра получится неинтересной. Остальные игроки пытаются понять правило, не говоря при этом ни слова. Они по очереди выкладывают по одной карте, пытаясь сформировать ряд из «правильных» карт. «Бог игры» сообщает, является карта «правильной» (в этом случае она кладется в конец ряда) или «неправильной» — в этом случае она кладется под последнюю правильную карту, а игрок, сделавший неверный ход, получает в качестве штрафа две новые карты из колоды. Начиная с 40-й карты, ошибочный ход наказывается выходом из игры.
Игра заканчивается, когда одному из игроков удалось избавиться от всех своих карт или когда все игроки покинули игру.
В книге «Десять игр, которые ни на что не похожи» Роберта Эббота подробно описана эта великолепная игра.
Среди других авторов XX века — Яков Перельман, один из основоположников русской школы занимательной науки, француз Пьер Берлокен и англичане Иэн Стюарт, Брайан Болт и Дэвид Уэллс. Каждый из них является автором множества книг и статей в различных периодических изданиях. Заслуживают внимания и испанские авторы, которые в своих книгах о математических играх и головоломках также попытались сделать математику ближе к широкой публике.Наиболее известные среди них — Мариано Матаиш, Мигель де Гусман и Фернандо Корбалан. Их труды вкупе с книгами уже упомянутых авторов — неистощимый источник задач, игр и математических развлечений.
Задача о костяшках домино от Якова Перельмана: четыре костяшки домино расположены в виде квадрата так, что суммы чисел на его сторонах равны. Задача — составить семь таких квадратов из полного набора домино.
Появление теории игр
Важная часть этой книги, а именно главы 4 и 5, посвящена теории игр. В ней показывается, что рано или поздно все математические понятия и модели находят применение в реальном мире, даже если изначально они никак не были связаны. Это справедливо и для анализа игр.
Хороший игрок тот, кто во время игры совершает наиболее верные ходы. Цель анализа игр заключается именно в том, чтобы найти верные ходы и, если такое возможно, определить, какие ходы нужно совершать, чтобы всегда выигрывать. Это теоретически возможно в конечных играх, где не фигурируют случайные события. Однако игра может быть столь масштабной, что это помешает определить выигрышную стратегию.
Теория игр появилась в работах Джона фон Неймана, в частности в книге «Теория игр и экономическое поведение», опубликованной им совместно с экономистом Оскаром Моргенштерном в 1944 году. Изначально в теории игр шла речь об абстрактных играх для двух и более игроков, где определены выигрыш и проигрыш для каждого игрока в зависимости от совершенного хода. Как правило, игроки ходят одновременно и не знают стратегию соперников. Эти игры, используемые как математические модели, изначально применялись при анализе экономических ситуаций. Фон Нейман и Моргенштерн показали способ определения оптимальной стратегии для каждого игрока в играх этого типа. Фон Нейман предложил для решения этих задач так называемый принцип минимакса, а также расширил его для игр, в которых присутствуют случайные события (так называемые смешанные стратегии). Его методы оказались столь успешными, что математики и экономисты начали применять их при решении более сложных задач.
Прикладные методы из мира экономики, работающие на довольно простых моделях, непрерывно развивались на протяжении второй половины XX века. С появлением игр, в которых выигрыш одного игрока не обязательно означает проигрыш других, возникла идея о сотрудничестве, точнее сказать, о компромиссе между соперничеством и сотрудничеством. Так теоретические модели все больше приближались к реальности и постепенно начали находить применение не только в экономических науках, но и в военной сфере, политике, эволюционной биологии и даже в философии. Все эти научные дисциплины, столь далекие друг от друга, схожи в одном: они предполагают принятие решений в ситуациях, которые можно рассматривать как игры. Но в этом случае само слово «игра» обозначает уже не что-то развлекательное, но нечто рискованное. По мере того как формулировки этих игр приближались к реальности и, как следствие, усложнялись, они стали допускать решения, в которых учитываются не только математические параметры, но и моральные, этические и философские принципы поведения человека.
Читать дальшеИнтервал:
Закладка: