Карл Левитин - Геометрическая рапсодия
- Название:Геометрическая рапсодия
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:1984
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Карл Левитин - Геометрическая рапсодия краткое содержание
Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии.
Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию.
Научно-художественная книга для широкого круга читателей.
Геометрическая рапсодия - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Итак, песок не сжимается, а, наоборот, расширяется под ногой, а когда мы ее убираем, он вновь "сокращается". Это удивительное явление, обнаруженное физиком, могло бы быть предсказано математиком. Оно связано с проблемой так называемой "плотной упаковки равных сфер". А эта проблема, в свою очередь, тесно связана и с нашими многогранниками, и с нашими мозаиками.
25
На плоскости есть две возможности уложить круги: вписав их в квадратную и в шестиугольную мозаику. Интуиция подсказывает, а расчет подтверждает: второй способ позволяет уложить круги более компактно, как говорят, плотность упаковки тут выше. Можно доказать (это и сделал венгерский математик Ласло Фейеш Тот), что более плотной упаковки придумать невозможно.
Впрочем, открытие это совершено миллионы лет назад. Его коллективный автор — пчелы. (Взгляните еще раз на гравюру М. К. Эсхера "Метаморфозы. II". На ней вы увидите, как квадратная мозаика переходит в гексагональную — шестиугольную. "На этом месте, — пишет сам художник, — возникает ассоциация "шестиугольники — соты", и мысль эта поддерживается личинками, которые начинают шевелиться в каждой ячейке".)
26
Но в пространстве дело обстоит намного сложнее — вопрос о том, упакуются ли сферы, помещенные в трехмерные соты самым плотным образом, остается открытым. (То есть, поскольку центры их окажутся в вершинах куба, не ясно, является ли простая кубическая упаковка самой компактной.) У подножия старых военных памятников лежат обычно пушечные ядра в виде пирамиды — верхнее ядро покоится на четырех других, те, в свою очередь, на девяти ниже расположенных ядрах и т. д. Каждое попавшее внутрь пирамиды ядро касается двенадцати других — четырех в своем слое, четырех внизу и вверху. Это так называемая кубическая плотная упаковка, описанная Кеплером. Если положить пирамиду набок, то получится другой способ упаковки ядер-сфер, но плотность ее та же самая (точное ее значение 0,7408). Есть и еще варианты, но ни один не гарантирует самое компактное расположение.
(В том числе и тот, "икосаэдрический" (4), все из того же спора Ньютона с Грегори.).
Вопрос об упаковках — не праздный и не абстрактный. Он связан со строением вещества, его прочностью, а потому кровно интересует специалистов в разных областях науки.
Джон Десмонд Бернал, который был президентом Всемирного Совета Мира, крупный английский ученый, считал, например, что "текучесть жидкости есть результат ее молекулярной неоднородности".
27
И потому начались эксперименты.
"Земляника растет и под крапивой", — подметил Шекспир. Геометрическая мысль плодоносит и в худших условиях. "Я сдавливал свежий горох в одном и том же котле с силой в 1600, 800 и 400 фунтов, — писал еще в 1727 году Стефан Хейлс в своей "Статистике растений", — при этих опытах горох расплющивался, но его уровень не повышался, так как под действием большого веса масса гороха заполняла промежутки между горошинами, которые превращались в прелестные маленькие додекаэдры". Через двести с лишним лет, в 1939 году, опыт этот повторили два ботаника — Д. Марвин и Э. Мацке. Они заменили горошины свинцовыми пулями и увеличили давление в десять раз. Получились неправильные четырнадцатигранные тела. Грани были по преимуществу пятиугольными, хотя среди них встречались и четырех- и шестиугольные. Далее было обнаружено, что внутренние клетки растительных тканей тоже имеют в среднем четырнадцать граней. Исследовали под микроскопом пену, состоящую из двух тысяч пузырьков. Те шестьсот из них, что расположились в центре, имели в среднем по 13,7 касания с соседями, но чаще всего они превращались в тринадцатигранник, составленный из одного четырехугольника, двух шестиугольников и десяти пятиугольников. В 1959 году Джон Бернал изящнейшим образом показал, что пятиугольная грань действительно имеет преимущество перед другими. Он изготовил из пластилина массу одинаковых шариков, вывалял их в меловой пудре, а затем спрессовал в сплошной ком. У получившихся фигур в среднем было 13,3 грани, в большинстве своем пятиугольных.
28
И спрессованная случайная упаковка равных свинцовых пуль или пластилиновых шариков, и приблизительно однородная ткань, состоящая из растительных клеток, и пена, образованная примерно одинаковыми пузырьками, как бы стремятся приблизиться к трехмерным пространственным сотам, в которых число граней единичной ячейки находится где-то между пятью и шестью. Это "между", то есть дробное число граней, означает, что соты существуют в статистическом смысле: в каких-то ячейках четыре, в каких-то — пять, в каких-то — шесть граней.
Соты, то есть пространство, заполненное многогранниками, позволяют изучать пространственные фигуры, "находясь" между ними и миром плоскости. (Эта идея пришла в голову в 1897 году Форольду Госсету, молодому английскому юристу, который из-за отсутствия клиентов развлекался тем, что подсчитывал правильные фигуры, имеющие вид на жительство в четвертом, пятом, шестом и вообще любом измерении. Оказалось, что в четырехмерном пространстве их шесть, а в пяти — и более мерном живут лишь три правильных выпуклых многогранника — аналоги куба, тетраэдра и октаэдра. Правда, доказал это не Госсет, а Стрингхэм еще в 1880 году [12] Это если считать по дате опубликования работы. Но Людвиг Шлефли получил то же доказательство раньше. Его рукопись долго пролежала в университетах Лейпцига и Берна и была опубликована лишь а 1901 году, через шесть лет после смерти автора.
. Но мысли Госсета о многомерных сотах математики не оценили, и скромный юрист вернулся к своим законам. Однако когда в журнале "Нейчур" в 1936 году появились стансы Ф. Содди "Поцелуй по расчету", где речь шла о "целующихся" многомерных сферах, Госсет откликнулся: он изложил в стихах часть тех выводов, что почти сорок лет пролежали в его архивах.) Соты помогли найти точную цифру, а именно 0,7797 (ее получил К. Роджерс в 1958 году), выше которой не может быть плотность ни одной упаковки. И в то же время очевидно, что любая меньшая плотность получается как бы сама собой, за счет случайных причин. Об этом и говорит эксперимент Осборна Рейнольдса на морском берегу: путешествуя по мокрому пляжу, мы изменяем упаковку песчинок, делая ее менее плотной, а такие варианты всегда, что называется, "под ногой". Под ударами волн или дождевых капель песчинки располагаются самым плотным из возможных способов. Теперь уже любое воздействие извне, особенно столь грубое, как давление ноги знаменитого ученого, не только не в силах уплотнить песок, но неизбежно разрушает "наиплотнейшеё" расположение песчинок, и потому вода засасывается в поры между ними. Рейнольде, разобравшись в сути явления, не советовал доверять продавцу, который, насыпав зерно в меру, начинает ревностно уминать его, как бы демонстрируя свое бескорыстие. На самом же деле при умелом уминании объем зерна может возрасти процентов на десять, а то и больше.
Интервал:
Закладка: